Suppr超能文献

用于从兆瓦级回旋管产生纳秒脉冲的激光驱动半导体开关。

Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron.

作者信息

Picard Julian F, Schaub Samuel C, Rosenzweig Guy, Stephens Jacob C, Shapiro Michael A, Temkin Richard J

机构信息

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Appl Phys Lett. 2019 Apr 22;114(16):164102. doi: 10.1063/1.5093639. Epub 2019 Apr 24.

Abstract

A laser-driven semiconductor switch (LDSS) employing silicon (Si) and gallium arsenide (GaAs) wafers has been used to produce nanosecond-scale pulses from a 3 s, 110 GHz gyrotron at the megawatt power level. Photoconductivity was induced in the wafers using a 532 nm laser, which produced 6 ns, 230 mJ pulses. Irradiation of a single Si wafer by the laser produced 110 GHz RF pulses with a 9 ns width and >70% reflectance. Under the same conditions, a single GaAs wafer yielded 24 ns 110 GHz RF pulses with >78% reflectance. For both semiconductor materials, a higher value of reflectance was observed with increasing 110 GHz beam intensity. Using two active wafers, pulses of variable length down to 3 ns duration were created. The switch was tested at incident 110 GHz RF power levels up to 600 kW. A 1-D model is presented that agrees well with the experimentally observed temporal pulse shapes obtained with a single Si wafer. The LDSS has many potential uses in high power millimeter-wave research, including testing of high-gradient accelerator structures.

摘要

一种采用硅(Si)和砷化镓(GaAs)晶片的激光驱动半导体开关(LDSS)已被用于从兆瓦功率水平的3秒、110吉赫兹回旋管产生纳秒级脉冲。使用532纳米激光在晶片中诱导光电导,该激光产生6纳秒、230毫焦的脉冲。激光照射单个硅晶片产生宽度为9纳秒、反射率>70%的110吉赫兹射频脉冲。在相同条件下,单个砷化镓晶片产生反射率>78%的24纳秒110吉赫兹射频脉冲。对于这两种半导体材料,随着110吉赫兹光束强度的增加,观察到更高的反射率值。使用两个有源晶片,产生了持续时间低至3纳秒的可变长度脉冲。该开关在高达600千瓦的入射110吉赫兹射频功率水平下进行了测试。提出了一个一维模型,该模型与用单个硅晶片实验观察到的时间脉冲形状非常吻合。LDSS在高功率毫米波研究中有许多潜在用途,包括高梯度加速器结构的测试。

相似文献

1
Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron.
Appl Phys Lett. 2019 Apr 22;114(16):164102. doi: 10.1063/1.5093639. Epub 2019 Apr 24.
2
Measurement of Time Dependent Reflection, Transmission, and Absorption in Laser Driven Silicon and GaAs Switches for 250 GHz Radiation.
IEEE Trans Terahertz Sci Technol. 2023 Jul;13(4):354-361. doi: 10.1109/tthz.2023.3270671. Epub 2023 Apr 27.
3
Resonant Ring with a Gain of 36 for Use with a 1 MW 110 GHz Gyrotron.
J Infrared Millim Terahertz Waves. 2024 Aug;45(7-8):657-671. doi: 10.1007/s10762-024-00991-0. Epub 2024 May 31.
5
All solid-state high power microwave source with high repetition frequency.
Rev Sci Instrum. 2013 May;84(5):054703. doi: 10.1063/1.4804196.
6
Study of the Effect of Reflections on High-Power, 110 GHz Pulsed Gyrotron Operation.
J Infrared Millim Terahertz Waves. 2021 May;42:547-556. doi: 10.1007/s10762-021-00769-8. Epub 2021 Feb 5.
7
Internal structuring of gallium arsenide using short laser pulses.
Opt Express. 2022 Oct 10;30(21):39101-39110. doi: 10.1364/OE.471432.
9
A novel miniaturized passively Q-switched pulse-burst laser for engine ignition.
Opt Express. 2014 Oct 6;22(20):24655-65. doi: 10.1364/OE.22.024655.
10
Amplification of a nanosecond laser pulse chain via dynamic injection locking of a laser diode.
Opt Lett. 2016 Dec 15;41(24):5724-5727. doi: 10.1364/OL.41.005724.

引用本文的文献

1
Resonant Ring with a Gain of 36 for Use with a 1 MW 110 GHz Gyrotron.
J Infrared Millim Terahertz Waves. 2024 Aug;45(7-8):657-671. doi: 10.1007/s10762-024-00991-0. Epub 2024 May 31.
2
Measurement of Time Dependent Reflection, Transmission, and Absorption in Laser Driven Silicon and GaAs Switches for 250 GHz Radiation.
IEEE Trans Terahertz Sci Technol. 2023 Jul;13(4):354-361. doi: 10.1109/tthz.2023.3270671. Epub 2023 Apr 27.
3
Study of the Effect of Reflections on High-Power, 110 GHz Pulsed Gyrotron Operation.
J Infrared Millim Terahertz Waves. 2021 May;42:547-556. doi: 10.1007/s10762-021-00769-8. Epub 2021 Feb 5.
4
Second Harmonic 527-GHz Gyrotron for DNP-NMR: Design and Experimental Results.
IEEE Trans Electron Devices. 2020 Jan;67(1):328-334. doi: 10.1109/ted.2019.2953658. Epub 2019 Dec 10.

本文引用的文献

2
Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy.
J Infrared Millim Terahertz Waves. 2013 Jan 1;34(1):42-52. doi: 10.1007/s10762-012-9947-1. Epub 2012 Nov 15.
3
Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.
Nature. 2012 Sep 20;489(7416):409-13. doi: 10.1038/nature11437.
4
High-speed switching of far-infrared radiation by photoionization in a semiconductor.
Appl Opt. 1992 Jan 20;31(3):329-37. doi: 10.1364/AO.31.000329.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验