Suppr超能文献

在吸附于 Ag(110)表面的氧-吡啶配合物中,非弹性电子隧穿的各向异性转换。

Orientation-specific switching of inelastic electron tunneling in an oxygen-pyridine complex adsorbed onto an Ag(110) surface.

机构信息

Department of Chemistry and Bioactive Material Sciences, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896, South Korea.

Department of Nanoscience and Technology, Chonbuk National University, Jeonju 54896, South Korea.

出版信息

J Chem Phys. 2019 Sep 21;151(11):114703. doi: 10.1063/1.5110545.

Abstract

Here, we report the development of a molecular rotary switch (a "stator-rotor" consisting of a single oxygen molecule as a stator and a single pyridine molecule as a rotor) on a silver surface. The pyridine molecule was bonded to the oxygen molecule and was found to rotate to enable "ON" or "OFF" vibrational conductance through the oxygen molecule. Four stable sites around the oxygen molecule were observed, and vibration conductance turned on and off depending on the site at which the pyridine molecule bonded. The spatially resolved mapping of the vibrational change revealed two locations of maximal vibration intensity, separated by ∼3 Å. These positions acted as two conducting channels. The two distinct vibrational energy levels were associated with the switching process. Adsorption-induced electron transfer between the silver layers and the molecules enhanced the local interactions between the molecules. The two vibration modes were excited by resonant tunneling despite substantial interactions between the molecules, which resulted in a decrease in tunneling conductance. An independent pathway exists for the vibrational excitation process by tunneling electrons and intermolecular interactions.

摘要

在这里,我们报告了在银表面上开发的一种分子旋转开关(由单个氧分子作为定子和单个吡啶分子作为转子组成的“定子-转子”)。吡啶分子与氧分子键合,并且发现其旋转可使氧分子通过“ON”或“OFF”振动电导率。观察到氧分子周围的四个稳定位置,并且吡啶分子键合的位置取决于振动电导的打开和关闭。振动变化的空间分辨映射显示了两个最大振动强度的位置,它们之间的距离约为 3 Å。这些位置充当两个传导通道。两个不同的振动能级与开关过程相关。银层和分子之间的吸附诱导电子转移增强了分子之间的局部相互作用。尽管分子之间存在大量相互作用,但共振隧穿激发了两种振动模式,导致隧穿电导率降低。振动激发过程存在通过隧穿电子和分子间相互作用的独立途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验