Suppr超能文献

石墨烯和石墨的润湿性、固液相互作用力场的优化以及平均场建模的见解。

Water wettability of graphene and graphite, optimization of solid-liquid interaction force fields, and insights from mean-field modeling.

机构信息

Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

J Chem Phys. 2019 Sep 21;151(11):114701. doi: 10.1063/1.5118888.

Abstract

A simple mean-field model of carbon-water interactions was developed to predict the binding energy in classical simulations for graphene and graphite surfaces. Using this model, analytical expressions were derived to link microscopic parameters (such as the binding energy) with macroscopic wetting behavior (work of adhesion). Adding these expressions to an optimized mean-field model of wettability, the empirical relationship between the binding energy and the work of adhesion in classical simulations was formally explained. An orientation dependent mean-field model and the insight gained from mean field modeling of the binding energy were used to develop a method to optimize comprehensive carbon-water interaction potentials, where molecular orientation is taken into account using data from state-of-the-art high-resolution multibody electronic structure methods. This method eliminates the ambiguity of finding a set of four parameters by informing on the bounds for the parameter-search process using physics-informed constraints.

摘要

开发了一个简单的碳-水相互作用的平均场模型,用于预测经典模拟中石墨烯和石墨表面的结合能。利用该模型,推导出了一些解析表达式,将微观参数(如结合能)与宏观润湿行为(粘附功)联系起来。将这些表达式添加到优化的润湿平均场模型中,就可以从经典模拟中正式解释结合能与粘附功之间的经验关系。基于取向相关的平均场模型和从结合能的平均场建模中获得的深入理解,开发了一种方法来优化综合的碳-水相互作用势能,其中使用最先进的高精度多体电子结构方法的数据来考虑分子取向。该方法通过使用物理信息约束来告知参数搜索过程的边界,从而消除了寻找一组四个参数的歧义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验