Suppr超能文献

基于光学相干断层扫描的面部皮肤结构验证:一项描述性研究。

Structural validation of facial skin using optical coherence tomography: A descriptive study.

机构信息

University College London Medical School, London, UK.

North End Medical Centre, London, UK.

出版信息

Skin Res Technol. 2020 Mar;26(2):153-162. doi: 10.1111/srt.12791. Epub 2019 Sep 23.

Abstract

BACKGROUND

In this immediate ex vivo study, we aimed to identify the structures of normal and pathological facial skin using optical coherence tomography (OCT) and compared them to the gold standard histopathology.

MATERIAL AND METHODS

A total of 53 patients, with 57 suspicious facial lesions, participated in this study. A set of variables have been highlighted by the pathologist to represent the minimum unique features that could be used to diagnose a skin pathology have been included in a checklist. One pathologist used this checklist while examining the histopathology slides and one clinician while examining the OCT images. The data from both checklists have been reviewed and compared.

RESULTS

Optical coherence tomography's overall accuracy in diagnosing AK was 83%. Best accuracy was achieved in diagnosing BCC and was 97%, while it was 85% for cutaneous SCC. OCT failed to diagnose LM with an accuracy of 33.3% based on the two parameters of the pathology checklist, while it was 81% for malignant melanoma.

CONCLUSION

This study proved the success of OCT in identifying structural changes in normal and pathological facial skin. Further studies to prove its usefulness in vivo are recommended.

摘要

背景

在这项即时的离体研究中,我们旨在使用光学相干断层扫描(OCT)来识别正常和病理性面部皮肤的结构,并将其与金标准组织病理学进行比较。

材料和方法

共有 53 名患者,57 处可疑面部病变参与了这项研究。一组变量已被病理学家突出显示,代表可用于诊断皮肤病理学的最小独特特征,这些特征已被包含在检查表中。一位病理学家在检查组织病理学切片时使用了这个检查表,一位临床医生在检查 OCT 图像时使用了这个检查表。审查和比较了这两个检查表的数据。

结果

OCT 诊断 AK 的总体准确率为 83%。诊断 BCC 的准确率最高,为 97%,而诊断皮肤 SCC 的准确率为 85%。OCT 根据病理检查表的两个参数,对 LM 的诊断准确率为 33.3%,而对恶性黑色素瘤的诊断准确率为 81%。

结论

这项研究证明了 OCT 识别正常和病理性面部皮肤结构变化的成功。建议进一步研究以证明其在体内的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验