Suppr超能文献

结构光成像显微术:检测浅表组织中内在的形态变化

Structured light imaging mesoscopy: detection of embedded morphological changes in superficial tissues.

作者信息

Parsanasab Mahsa, Mehendale Aarohi Mahesh, Karrobi Kavon, Roblyer Darren, Venugopalan Vasan

机构信息

University of California, Irvine, Department of Chemical and Biomolecular Engineering, Irvine, California, United States.

University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States.

出版信息

J Biomed Opt. 2025 Jun;30(6):065001. doi: 10.1117/1.JBO.30.6.065001. Epub 2025 Jun 18.

Abstract

SIGNIFICANCE

Current paradigms for the optical characterization of layered tissues involve explicit consideration of an inverse problem which is often ill-posed and whose resolution may retain significant uncertainty. Here, we present an alternative approach, structured light imaging mesoscopy (SLIM), that leverages the inherent sensitivity of raw spatial frequency domain (SFD) reflectance measurements for the detection of embedded subsurface scattering changes in tissue.

AIM

We identify wavelength-spatial frequency ( ) combinations that provide optimal sensitivity of SFD reflectance changes originating from scattering changes in an embedded tissue layer. We specifically consider the effects of scattering changes in the superficial dermis which is a key locus of pathology for diverse skin conditions such as cancer, aging, and scleroderma.

APPROACH

We used Monte Carlo simulations in a four-layer skin model to analyze the SFD reflectance changes resulting from changes in superficial dermal scattering across wavelength ( to 851 nm) and spatial frequency ( to 0.5/mm). Within this model, we consider different values for epidermal melanin concentration to simulate variations in skin tone.

RESULTS

Monte Carlo simulations revealed that scattering changes within the superficial dermis produce SFD reflectance changes which are maximized at specific ( ) pairs and vary with skin tone. For light skin tones, SFD reflectance changes due to scattering reductions in the superficial dermis are maximized at and spatial frequency . By contrast, for darker skin tones, maximal SFD reflectance changes occur at wavelengths in the near-infrared ( ) at a spatial frequency of . Interestingly, the change in SFD reflectance produced by such scattering changes is most uniform across all skin tones when using the longest wavelength tested ( ) and a spatial frequency of . Taken together, our computational model identifies specific ( ) pairs to optimally detect embedded structural alterations in the superficial dermis.

CONCLUSIONS

The findings establish the SLIM methodology as a means to detect morphological changes in an embedded subsurface tissue layer by leveraging inherent sensitivities of spatial frequency domain reflectance. This approach promises to enable simplified clinical tracking of subsurface microstructural alterations without the explicit need to consider an inverse problem approach.

摘要

意义

当前用于分层组织光学表征的范例涉及对一个往往不适定且其解决方案可能仍存在重大不确定性的反问题进行明确考虑。在此,我们提出一种替代方法,即结构光成像显微镜(SLIM),它利用原始空间频域(SFD)反射率测量的固有灵敏度来检测组织中嵌入式皮下散射变化。

目的

我们确定波长 - 空间频率(λ - f)组合,这些组合能为源自嵌入式组织层散射变化的SFD反射率变化提供最佳灵敏度。我们特别考虑了浅表真皮层散射变化的影响,浅表真皮层是癌症、衰老和硬皮病等多种皮肤疾病的关键病理部位。

方法

我们在一个四层皮肤模型中使用蒙特卡罗模拟,以分析在波长范围(450 nm至851 nm)和空间频率范围(0.1 mm - 1至0.5/mm)内浅表真皮散射变化所导致的SFD反射率变化。在这个模型中,我们考虑表皮黑色素浓度的不同值来模拟肤色变化。

结果

蒙特卡罗模拟表明,浅表真皮层内的散射变化会产生SFD反射率变化,这些变化在特定的(λ - f)对处达到最大值,并随肤色而变化。对于浅肤色,由于浅表真皮层散射减少导致 的SFD反射率变化在波长为532 nm和空间频率为0.2/mm时达到最大值。相比之下,对于较深肤色,最大的SFD反射率变化发生在近红外波长(851 nm)、空间频率为0.1/mm时。有趣的是,当使用测试的最长波长(851 nm)和空间频率为0.1/mm时,这种散射变化所产生的SFD反射率变化在所有肤色中最为均匀。综合来看,我们的计算模型确定了特定的(λ - f)对,以最佳地检测浅表真皮层中的嵌入式结构改变。

结论

这些发现确立了SLIM方法作为一种通过利用空间频域反射率的固有灵敏度来检测嵌入式皮下组织层形态变化的手段。这种方法有望实现对皮下微观结构改变的简化临床跟踪,而无需明确考虑反问题方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa35/12175002/c9d4bead8168/JBO-030-065001-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验