Suppr超能文献

基于序贯显著性引导的深度神经网络用于时相差分对比显微镜图像中的有丝分裂自动识别与定位

Sequential Saliency Guided Deep Neural Network for Joint Mitosis Identification and Localization in Time-Lapse Phase Contrast Microscopy Images.

出版信息

IEEE J Biomed Health Inform. 2020 May;24(5):1367-1378. doi: 10.1109/JBHI.2019.2943228. Epub 2019 Sep 23.

Abstract

The analysis of cell mitotic behavior plays important role in many biomedical research and medical diagnostic applications. To improve the accuracy of mitosis detection in automated analysis systems, this paper proposes the sequential saliency guided deep neural network (SSG-DNN) to jointly identify and localize mitotic events in time-lapse phase contrast microscopy images. It consists of three key modules. First, the module of visual context learning extracts static visual feature and dynamic visual transition within individual volumetric cell regions. Secondly, with these information, the module of sequential saliency modeling aims to discover the saliency distribution over all successive frames in each volumetric region. Finally, the module of sequence structure modeling can leverage both visual context and saliency distribution for mitosis identification and localization. SSG-DNN can jointly realize visual feature learning and sequential structure modeling in the end-to-end framework. Moreover, the proposed method is independent of complicated preconditioning methods for mitotic candidate extraction and can be applied for mitosis detection in one-shot manner. To our knowledge, it is the first weakly supervised work to realize joint mitosis identification and localization only with sequence-wise labels. In our experiments, we evaluate its performances of both tasks on the popular C3H10 dataset and a novel and large-scale dataset, C2C12-16, which contains much more mitotic events and is more challenging owing to diverse cell culture conditions. Experimental results can demonstrate the superiority of the proposed method.

摘要

细胞有丝分裂行为分析在许多生物医学研究和医学诊断应用中起着重要作用。为了提高自动分析系统中有丝分裂检测的准确性,本文提出了一种基于序贯显著引导的深度神经网络(SSG-DNN),用于在时相差显微镜图像中联合识别和定位有丝分裂事件。它由三个关键模块组成。首先,视觉上下文学习模块提取单个体积细胞区域内的静态视觉特征和动态视觉转换。其次,利用这些信息,序列显著建模模块旨在发现每个体积区域中所有连续帧上的显著分布。最后,序列结构建模模块可以利用视觉上下文和显著分布来进行有丝分裂识别和定位。SSG-DNN 可以在端到端框架中联合实现视觉特征学习和序列结构建模。此外,该方法不依赖于有丝分裂候选提取的复杂预处理方法,可用于单次检测有丝分裂。据我们所知,这是第一个仅使用序列标签实现联合有丝分裂识别和定位的弱监督工作。在我们的实验中,我们在流行的 C3H10 数据集和一个新的大规模数据集 C2C12-16 上评估了这两个任务的性能,后者包含了更多的有丝分裂事件,由于不同的细胞培养条件,更具挑战性。实验结果可以证明该方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验