Xu Xiaobo, Zhang Xiaocheng, Huang Zhaowu, Xie Shaoyou, Gu Wenping, Wang Xiaoyan, Zhang Lin, Zhang Zan
School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, China.
Materials (Basel). 2019 Sep 19;12(18):3037. doi: 10.3390/ma12183037.
In the photovoltaic (PV) field, the outdoor evaluation of a PV system is quite complex, due to the variations of temperature and irradiance. In fact, the diagnosis of the PV modules is extremely required in order to maintain the optimum performance. In this paper, an artificial neural network (ANN) is proposed to build and train the model, and evaluate the PV module performance by mean bias error, mean square error and the regression analysis. We take temperature, irradiance and a specific voltage for input, and a specific current value for output, repeat several times in order to obtain an I-V curve. The main feature lies to the data-driven black-box method, with the ignorance of any analytical equations and hence the conventional five parameters (serial resistance, shunt resistance, non-ideal factor, reverse saturation current, and photon current). The ANN is able to predict the I-V curves of the Si PV module at arbitrary irradiance and temperature. Finally, the proposed algorithm has proved to be valid in terms of comparison with the testing dataset.
在光伏(PV)领域,由于温度和辐照度的变化,光伏系统的户外评估相当复杂。事实上,为了维持最佳性能,对光伏组件进行诊断是极为必要的。本文提出了一种人工神经网络(ANN)来构建和训练模型,并通过平均偏差误差、均方误差和回归分析来评估光伏组件的性能。我们将温度、辐照度和一个特定电压作为输入,将一个特定电流值作为输出,重复多次以获得一条I-V曲线。主要特点在于数据驱动的黑箱方法,无需考虑任何解析方程以及传统的五个参数(串联电阻、并联电阻、非理想因子、反向饱和电流和光生电流)。人工神经网络能够预测硅光伏组件在任意辐照度和温度下的I-V曲线。最后,与测试数据集相比,所提出的算法已证明是有效的。