Pazikadin Abdul Rahim, Rifai Damhuji, Ali Kharudin, Mamat Nor Hana, Khamsah Noraznafulsima
Faculty of Engineering Technology, TATIUC, Kemaman 24000, Terengganu, Malaysia.
ZSR Vortices Sdn. Bhd. Prima Dagangan, Bandar Baru Kijal 24100, Terengganu, Malaysia.
Sensors (Basel). 2020 Nov 25;20(23):6744. doi: 10.3390/s20236744.
Photovoltaic (PV) systems need measurements of incident solar irradiance and PV surface temperature for performance analysis and monitoring purposes. Ground-based network sensor measurement is preferred in many near real-time operations such as forecasting and photovoltaic (PV) performance evaluation on the ground. Hence, this study proposed a Fuzzy compensation scheme for temperature and solar irradiance wireless sensor network (WSN) measurement on stand-alone solar photovoltaic (PV) system to improve the sensor measurement. The WSN installation through an Internet of Things (IoT) platform for solar irradiance and PV surface temperature measurement was fabricated. The simulation for the solar irradiance Fuzzy Logic compensation (SIFLC) scheme and Temperature Fuzzy Logic compensation (TFLC) scheme was conducted using Matlab/Simulink. The simulation result identified that the scheme was used to compensate for the error temperature and solar irradiance sensor measurements over a variation temperature and solar irradiance range from 20 to 60 °C and from zero up to 2000 W/m. The experimental results show that the Fuzzy Logic compensation scheme can reduce the sensor measurement error up to 17% and 20% for solar irradiance and PV temperature measurement.
光伏(PV)系统需要测量入射太阳辐照度和光伏表面温度,以便进行性能分析和监测。在许多近实时操作中,如地面上的预测和光伏(PV)性能评估,地面网络传感器测量是首选。因此,本研究提出了一种模糊补偿方案,用于独立太阳能光伏(PV)系统上的温度和太阳辐照度无线传感器网络(WSN)测量,以改善传感器测量。通过物联网(IoT)平台进行了用于太阳辐照度和光伏表面温度测量的WSN安装。使用Matlab/Simulink对太阳辐照度模糊逻辑补偿(SIFLC)方案和温度模糊逻辑补偿(TFLC)方案进行了仿真。仿真结果表明,该方案用于补偿温度和太阳辐照度传感器在20至60°C的温度变化范围以及从零到2000 W/m的太阳辐照度范围内的测量误差。实验结果表明,模糊逻辑补偿方案可将太阳辐照度和光伏温度测量的传感器测量误差分别降低高达17%和20%。