Suppr超能文献

CT 成像标志物通过堆叠回归算法改善前列腺癌放射治疗的放射毒性预测。

CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm.

机构信息

Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Sorkheh-Ligeh Blvd, Kermanshah, 6714415153, Iran.

Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Radiol Med. 2020 Jan;125(1):87-97. doi: 10.1007/s11547-019-01082-0. Epub 2019 Sep 24.

Abstract

PURPOSE

Radiomic features, clinical and dosimetric factors have the potential to predict radiation-induced toxicity. The aim of this study was to develop prediction models of radiotherapy-induced toxicities in prostate cancer patients based on computed tomography (CT) radiomics, clinical and dosimetric parameters.

METHODS

In this prospective study, prostate cancer patients were included, and radiotherapy-induced urinary and gastrointestinal (GI) toxicities were assessed by Common Terminology Criteria for adverse events. For each patient, clinical and dose volume parameters were obtained. Imaging features were extracted from pre-treatment rectal and bladder wall CT scan of patients. Stacking algorithm and elastic net penalized logistic regression were used in order to feature selection and prediction, simultaneously. The models were fitted by imaging (radiomics model) and clinical/dosimetric (clinical model) features alone and in combinations (clinical-radiomics model). Goodness of fit of the models and performance of classifications were assessed using Hosmer and Lemeshow test, - 2log (likelihood) and area under curve (AUC) of the receiver operator characteristic.

RESULTS

Sixty-four prostate cancer patients were studied, and 33 and 52 patients developed ≥ grade 1 GI and urinary toxicities, respectively. In GI modeling, the AUC for clinical, radiomics and clinical-radiomics models was 0.66, 0.71 and 0.65, respectively. To predict urinary toxicity, the AUC for radiomics, clinical and clinical-radiomics models was 0.71, 0.67 and 0.77, respectively.

CONCLUSIONS

We have shown that CT imaging features could predict radiation toxicities and combination of imaging and clinical/dosimetric features may enhance the predictive performance of radiotoxicity modeling.

摘要

目的

放射组学特征、临床和剂量学因素具有预测放射性毒性的潜力。本研究旨在基于计算机断层扫描(CT)放射组学、临床和剂量学参数,建立前列腺癌患者放疗后毒性的预测模型。

方法

本前瞻性研究纳入了前列腺癌患者,通过不良事件常用术语标准评估放疗诱导的尿和胃肠道(GI)毒性。对于每位患者,获取临床和剂量体积参数。从患者的直肠和膀胱壁 CT 扫描中提取成像特征。使用堆叠算法和弹性网惩罚逻辑回归同时进行特征选择和预测。通过单独使用成像(放射组学模型)和临床/剂量学(临床模型)特征以及它们的组合(临床-放射组学模型)对模型进行拟合。通过 Hosmer 和 Lemeshow 检验、-2log(似然)和接收者操作特征曲线下面积(AUC)评估模型的拟合优度和分类性能。

结果

共研究了 64 例前列腺癌患者,33 例和 52 例患者分别发生≥1 级 GI 和尿毒性。在 GI 建模中,临床、放射组学和临床-放射组学模型的 AUC 分别为 0.66、0.71 和 0.65。预测尿毒性时,放射组学、临床和临床-放射组学模型的 AUC 分别为 0.71、0.67 和 0.77。

结论

我们已经表明,CT 成像特征可以预测放射性毒性,并且将成像与临床/剂量学特征相结合可以提高放射毒性建模的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验