Suppr超能文献

基于机器学习的放射组学模型预测乳腺癌放疗所致心脏毒性

Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer.

作者信息

Talebi Amin, Bitarafan-Rajabi Ahmad, Alizadeh-Asl Azin, Seilani Parisa, Khajetash Benyamin, Hajianfar Ghasem, Tavakoli Meysam

机构信息

Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.

出版信息

J Appl Clin Med Phys. 2025 Apr;26(4):e14614. doi: 10.1002/acm2.14614. Epub 2024 Dec 20.

Abstract

PURPOSE

Cardiotoxicity is one of the major concerns in breast cancer treatment, significantly affecting patient outcomes. To improve the likelihood of favorable outcomes for breast cancer survivors, it is essential to carefully balance the potential advantages of treatment methods with the risks of harm to healthy tissues, including the heart. There is currently a lack of comprehensive, data-driven evidence on effective risk stratification strategies. The aim of this study is to investigate the prediction of cardiotoxicity using machine learning methods combined with radiomics, clinical, and dosimetric features.

MATERIALS AND METHODS

A cohort of 83 left-sided breast cancer patients without a history of cardiac disease was examined. Two- and three-dimensional echocardiography were performed before and after 6 months of treatment to evaluate cardiotoxicity. Cardiac dose-volume histograms, demographic data, echocardiographic parameters, and ultrasound imaging radiomics features were collected for all patients. Toxicity modeling was developed with three feature selection methods and five classifiers in four separate groups (Dosimetric, Dosimetric + Demographic, Dosimetric + Demographic + Clinical, and Dosimetric + Demographic + Clinical + Imaging). The prediction performance of the models was validated using five-fold cross-validation and evaluated by AUCs.

RESULTS

58% of patients showed cardiotoxicity 6 months after treatment. Mean left ventricular ejection fraction and Global longitudinal strain decreased significantly compared to pre-treatment (p-value < 0.001). After feature selection and prediction modeling, the Dosimetric, Dosimetric + Demographic, Dosimetric + Demographic + Clinical, Dosimetric + Demographic + Clinical + Imaging models showed prediction performance (AUC) up to 73%, 75%, 85%, and 97%, respectively.

CONCLUSION

Incorporating clinical and imaging features along with dose descriptors are beneficial for predicting cardiotoxicity after radiotherapy.

摘要

目的

心脏毒性是乳腺癌治疗中的主要关注点之一,显著影响患者的治疗结果。为提高乳腺癌幸存者获得良好预后的可能性,必须谨慎权衡治疗方法的潜在益处与对包括心脏在内的健康组织造成损害的风险。目前缺乏关于有效风险分层策略的全面、数据驱动的证据。本研究的目的是使用机器学习方法结合放射组学、临床和剂量学特征来研究心脏毒性的预测。

材料与方法

对83例无心脏病史的左侧乳腺癌患者进行了队列研究。在治疗6个月前后进行二维和三维超声心动图检查以评估心脏毒性。收集了所有患者的心脏剂量体积直方图、人口统计学数据、超声心动图参数和超声成像放射组学特征。使用三种特征选择方法和五个分类器在四个独立的组(剂量学组、剂量学 + 人口统计学组、剂量学 + 人口统计学 + 临床组以及剂量学 + 人口统计学 + 临床 + 影像学组)中建立毒性模型。使用五折交叉验证对模型的预测性能进行验证,并通过曲线下面积(AUC)进行评估。

结果

58%的患者在治疗6个月后出现心脏毒性。与治疗前相比,平均左心室射血分数和整体纵向应变显著降低(p值<0.001)。经过特征选择和预测建模后,剂量学模型、剂量学 + 人口统计学模型、剂量学 + 人口统计学 + 临床模型、剂量学 + 人口统计学 + 临床 + 影像学模型的预测性能(AUC)分别高达73%、75%、85%和97%。

结论

将临床和影像学特征与剂量描述符相结合有助于预测放疗后的心脏毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5837/11969081/4cd363014c6b/ACM2-26-e14614-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验