MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Chem Commun (Camb). 2019 Oct 8;55(81):12223-12226. doi: 10.1039/c9cc05531b.
The CRISPR-Cas9 system enables facile and efficient genome engineering in living cells and organisms. Small molecule control of CRISPR-Cas9 would allow precise temporal control in applications of the technology. In this work, we developed s[combining low line]mall m[combining low line]olecule-activated allosteric a[combining low line]ptamer r[combining low line]egulat[combining low line]ing (SMART)-sgRNAs as general strategies to control programmable genome editing. With SMART-sgRNAs, temporal control of the CRISPR-Cas9 system against different targets can be achieved, which should facilitate its application in various fields, such as biomedical genome editing, drug screening and chromosome imaging.
CRISPR-Cas9 系统使在活细胞和生物体中进行基因组工程变得容易和高效。小分子控制 CRISPR-Cas9 将允许在该技术的应用中进行精确的时间控制。在这项工作中,我们开发了小分子激活的变构适体调节(SMART)-sgRNA 作为控制可编程基因组编辑的通用策略。通过 SMART-sgRNA,可以实现针对不同靶标的 CRISPR-Cas9 系统的时间控制,这将有助于其在生物医学基因组编辑、药物筛选和染色体成像等各个领域的应用。