Hybrid Nanophotonics and Optoelectronics Laboratory, Physics and Engineering Department, ITMO University, St Petersburg, 197101, Russia.
Nanoscale. 2019 Oct 3;11(38):17800-17806. doi: 10.1039/c9nr03793d.
Halide perovskites are a family of semiconductor materials demonstrating prospective properties for optical cooling owing to efficient luminescence at room temperature and strong electron-phonon interaction. Moreover, perovskite based nanophotonic designs would allow for efficient optical cooling at the nanoscale. Here, we propose a novel strategy for the enhancement of optical cooling at the nanoscale based on optical resonance engineering in halide perovskite nanoparticles. Namely, the photoluminescence up-conversion efficiency in a nanoparticle is optimized via excitation of Mie-resonances both at emission and absorption wavelengths. The optimized theoretical photo-induced temperature decrease achieved for a hybrid halide perovskite (CH3NH3PbI3) 530 nm nanoparticle on a glass substrate is more than 100 K under CW illumination at wavelength 980 nm and moderate intensities (∼7 × 106 W cm-2). The optimized regime originates from simultaneous excitation of a magnetic quadrupole and a magnetic octupole at pump and emission wavelengths, respectively. The combination of a thermally sensitive photoluminescence signal and simplicity in the fabrication of a halide perovskite nanocavity will pave the way for implementation of nanoscale optical coolers for advanced applications.
卤化物钙钛矿是一类半导体材料,由于其在室温下的高效发光和强电子-声子相互作用,具有用于光致冷却的潜在特性。此外,基于钙钛矿的纳米光子学设计将允许在纳米尺度上实现高效的光致冷却。在这里,我们提出了一种基于卤化物钙钛矿纳米粒子中光学共振工程的新型纳米尺度光学冷却增强策略。也就是说,通过在发射和吸收波长处激发 Mie 共振,优化了纳米粒子中的光致发光上转换效率。在 CW 照明下,对于在玻璃衬底上的混合卤化物钙钛矿 (CH3NH3PbI3) 530nm 纳米粒子,在波长为 980nm 且强度适中(约为 7×106W cm-2)时,优化后的理论光致温度降低超过 100K。优化的状态源自于在泵浦和发射波长处分别同时激发磁四极和磁八极。将热敏光致发光信号与卤化物钙钛矿纳米腔的简单制造相结合,将为先进应用的纳米尺度光学冷却器的实现铺平道路。