Pokryshkin Nikolay S, Mantsevich Vladimir N, Timoshenko Victor Y
Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
Phys-Bio Institute, University "MEPhI", 115409 Moscow, Russia.
Nanomaterials (Basel). 2023 Jun 9;13(12):1833. doi: 10.3390/nano13121833.
Anti-Stokes photoluminescence (ASPL) is an up-conversion phonon-assisted process of radiative recombination of photoexcited charge carriers when the ASPL photon energy is above the excitation one. This process can be very efficient in nanocrystals (NCs) of metalorganic and inorganic semiconductors with perovskite (Pe) crystal structure. In this review, we present an analysis of the basic mechanisms of ASPL and discuss its efficiency depending on the size distribution and surface passivation of Pe-NCs as well as the optical excitation energy and temperature. When the ASPL process is sufficiently efficient, it can result in an escape of most of the optical excitation together with the phonon energy from the Pe-NCs. It can be used in optical fully solid-state cooling or optical refrigeration.
反斯托克斯光致发光(ASPL)是一种光激发电荷载流子辐射复合的上转换声子辅助过程,当ASPL光子能量高于激发能量时发生。在具有钙钛矿(Pe)晶体结构的金属有机和无机半导体纳米晶体(NCs)中,这一过程可能非常高效。在本综述中,我们对ASPL的基本机制进行了分析,并讨论了其效率与Pe-NCs的尺寸分布、表面钝化以及光激发能量和温度的关系。当ASPL过程足够高效时,它会导致大部分光激发以及声子能量从Pe-NCs中逸出。它可用于光学全固态冷却或光制冷。