Instituto de Física, Universidade Federal de Uberlândia, C.P. 593, 38400-902, Uberlândia, MG, Brazil.
Nanoscale. 2019 Oct 3;11(38):17894-17903. doi: 10.1039/c9nr05279h.
We performed a theoretical investigation of the structural and electronic properties of (i) pristine and (ii) superlattice structures of borophene. In (i), by combining first-principles calculations, based on the density functional theory (DFT), and simulations of the X-ray Absorption Near-Edge Structure (XANES) spectra we present a comprehensive picture connecting the atomic arrangement of borophene and the X-ray absorption spectra. Once we characterized the electronic properties of the pristine systems, we next examined the electronic confinement effects in 2D borophene superlattices (BSLs) [(ii)]. Here, the BSL structures were made by attaching laterally two different structural phases of borophene. The energetic stability and the electronic properties of these BSLs were examined based on total energy DFT calculations. We find a highly anisotropic electronic structure, characterized by the electronic confinement effects, giving rise to "electronic stripes", and metallic channels ruled by the superlattices. Combining DFT and the Landauer-Büttiker formalism, we investigated the electronic transport properties in BSLs. Our results of the transmission probability reveal that the electronic transport is ruled by π or a combination of π and σ transmission channels, depending on the atomic arrangement and periodicity of the superlattices. Finally, we show that there is a huge magnification of the directional dependence of the electronic transport properties in BSLs, in comparison with the pristine borophene phase. These findings indicate that BSLs are quite interesting systems in order to design conductive nanoribbons on a 2D platform.
我们对(i)原始和(ii)硼烯超晶格结构的结构和电子性质进行了理论研究。在(i)中,通过结合基于密度泛函理论(DFT)的第一性原理计算和 X 射线吸收近边结构(XANES)谱的模拟,我们提出了一个将硼烯的原子排列与 X 射线吸收光谱联系起来的综合图像。一旦我们表征了原始系统的电子性质,我们就检查了二维硼烯超晶格(BSL)中的电子限制效应[(ii)]。在这里,通过横向连接两种不同的硼烯结构相来制造 BSL 结构。基于总能量 DFT 计算,研究了这些 BSL 结构的能量稳定性和电子性质。我们发现了一种各向异性很强的电子结构,其特征是电子限制效应,导致出现“电子条纹”,以及由超晶格控制的金属通道。通过结合 DFT 和 Landauer-Büttiker 形式主义,我们研究了 BSL 中的电子输运性质。我们的传输概率结果表明,电子输运受π或π和σ传输通道的组合控制,这取决于超晶格的原子排列和周期性。最后,我们表明,与原始硼烯相相比,BSL 中的电子输运性质的方向依赖性有了巨大的放大。这些发现表明,BSL 是一个非常有趣的系统,可用于在二维平台上设计导电纳米带。