Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang , Jiangsu University , Zhenjiang 212013 , P. R. China .
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):39263-39273. doi: 10.1021/acsami.9b10723. Epub 2019 Oct 10.
Micromesoporous metal-nitrogen-doped carbons have attracted incremental attention owning to their high activities for the electrocatalyzing oxygen reduction reaction (ORR). However, scalable synthesis of micromesoporous metal-nitrogen-doped carbons having superior electrocatalytic activity and stability remains a challenge. Here, an iron-nitrogen-doped carbon with highly electrocatalytic properties was simply prepared by ZnCl activation of an in situ polymerized iron-containing polypyrrole (PPy@FeCl) at high temperature. High yields of polypyrrole (∼98 wt %) and iron-nitrogen-doped carbon (∼47 wt %) could be reached. The eutectic state of FeCl-ZnCl and its derived ZnFeO maskant played important roles in making micromesopores, scattering iron atoms, and trapping nitrogen atoms, leading to numerous micromesopore defects, a larger specific surface area, a more nitrogen doping content, and active sites for the material. The electrochemical tests and Zn-air battery measurements showed that the micromesoporous iron-nitrogen-doped carbon could achieve much positive onset and half-wave potentials at 0.98 and 0.90 V, respectively, as well as a large current density (6.06 mA/cm) and good cycling stability. The combination of the iron-nitrogen doping and micromesopore defects by the eutectic salt activation method provided an effective way to scalable synthesize iron-nitrogen-doped carbon as highly active and stable oxygen reduction electrocatalytsts.
中孔金属-氮掺杂碳由于其对电催化氧还原反应(ORR)的高活性而引起了越来越多的关注。然而,具有优异电催化活性和稳定性的中孔金属-氮掺杂碳的可扩展合成仍然是一个挑战。在这里,通过在高温下用 ZnCl2 活化原位聚合的含铁聚吡咯(PPy@FeCl),简单地制备了一种具有高电催化性能的铁-氮掺杂碳。可以达到高收率的聚吡咯(约 98wt%)和铁-氮掺杂碳(约 47wt%)。FeCl-ZnCl 的共晶态及其衍生的 ZnFeO 掩蔽剂在形成中孔、散射铁原子和捕获氮原子方面发挥了重要作用,导致大量的中孔缺陷、更大的比表面积、更高的氮掺杂含量和材料的活性位点。电化学测试和锌空气电池测量表明,中孔铁-氮掺杂碳在 0.98 和 0.90 V 时可以分别达到更高的起始和半波电位,以及更大的电流密度(6.06 mA/cm)和良好的循环稳定性。共晶盐活化法的铁-氮掺杂和中孔缺陷的结合为可扩展合成高活性和稳定的氧还原电催化剂提供了一种有效的方法。