Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
Mol Biol Evol. 2020 Jan 1;37(1):221-239. doi: 10.1093/molbev/msz216.
Transposable elements (TEs) are drivers of genome evolution and affect the expression landscape of the host genome. Stress is a major factor inducing TE activity; however, the regulatory mechanisms underlying de-repression are poorly understood. Plant pathogens are excellent models to dissect the impact of stress on TEs. The process of plant infection induces stress for the pathogen, and virulence factors (i.e., effectors) located in TE-rich regions become expressed. To dissect TE de-repression dynamics and contributions to virulence, we analyzed the TE expression landscape of four strains of the major wheat pathogen Zymoseptoria tritici. We experimentally exposed strains to nutrient starvation and host infection stress. Contrary to expectations, we show that the two distinct conditions induce the expression of different sets of TEs. In particular, the most highly expressed TEs, including miniature inverted-repeat transposable element and long terminal repeat-Gypsy element, show highly distinct de-repression across stress conditions. Both the genomic context of TEs and the genetic background stress (i.e., different strains harboring the same TEs) were major predictors of de-repression under stress. Gene expression profiles under stress varied significantly depending on the proximity to the closest TEs and genomic defenses against TEs were largely ineffective to prevent de-repression. Next, we analyzed the locus encoding the Avr3D1 effector. We show that the insertion and subsequent silencing of TEs in close proximity likely contributed to reduced expression and virulence on a specific wheat cultivar. The complexity of TE responsiveness to stress across genetic backgrounds and genomic locations demonstrates substantial intraspecific genetic variation to control TEs with consequences for virulence.
转座元件 (TEs) 是基因组进化的驱动因素,影响宿主基因组的表达谱。应激是诱导 TE 活性的主要因素;然而,去抑制的调控机制还知之甚少。植物病原体是剖析应激对 TE 影响的极好模型。植物感染过程会给病原体带来应激,位于 TE 丰富区域的毒力因子(即效应子)开始表达。为了剖析 TE 去抑制的动态变化及其对毒力的贡献,我们分析了小麦主要病原体叶锈菌的四个菌株的 TE 表达谱。我们通过实验将菌株暴露于营养饥饿和宿主感染应激中。与预期相反,我们表明这两种截然不同的条件会诱导不同的 TE 集表达。特别是,表达水平最高的 TE,包括微型反向重复转座元件和长末端重复-Gypsy 元件,在不同的应激条件下表现出高度不同的去抑制。TE 的基因组上下文和遗传背景应激(即携带相同 TE 的不同菌株)都是应激下去抑制的主要预测因子。应激下的基因表达谱因与最近的 TE 接近程度而显著不同,而针对 TE 的基因组防御在很大程度上无法防止去抑制。接下来,我们分析了编码 Avr3D1 效应子的基因座。我们表明,TE 的插入和随后的沉默在附近可能导致对特定小麦品种的表达减少和毒力降低。TE 对遗传背景和基因组位置的应激响应的复杂性表明,存在大量的种内遗传变异来控制 TE,这对毒力有影响。