Kanduč Matej, Kim Won Kyu, Roa Rafael, Dzubiella Joachim
Jožef Stefan Institute , Jamova 39 , 1000 Ljubljana , Slovenia.
Korea Institute for Advanced Study , 85 Hoegiro , Seoul 02455 , Republic of Korea.
ACS Nano. 2019 Oct 22;13(10):11224-11234. doi: 10.1021/acsnano.9b04279. Epub 2019 Oct 1.
The uptake and sorption of charged molecules by responsive polymer membranes and hydrogels in aqueous solutions is of key importance for the development of soft functional materials. Here, we investigate the partitioning of simple monatomic (Na, K, Cs, Cl, I) and one molecular ion (4-nitrophenolate; NP) within a dense, electroneutral poly(-isopropylacrylamide) membrane using explicit-water molecular dynamics simulations. Inside the predominantly hydrophobic environment, water distributes in a network of polydisperse water nanoclusters. The average cluster size determines the mean electrostatic self-energy of the simple ions, which preferably reside deeply inside them; we therefore find substantially larger partition ratios ≃10 than expected from a simple Born picture using a uniform dielectric constant. Despite their irregular shapes, we observe that the water clusters possess a universal negative electrostatic potential with respect to their surroundings, as is known for aqueous liquid-vapor interfaces. This potential, which we find concealed in cases of symmetric monatomic salts, can dramatically impact the transfer free energies of larger charged molecules because of their weak hydration and increased affinity to interfaces. Consequently, and in stark contrast to the simple ions, the molecular ion NP can have a partition ratio much larger than unity, ≃10-30 (depending on the cation type) or even 10 in excess of monovalent salt, which explains recent observations of enhanced reaction kinetics of NP reduction catalyzed within dense polymer networks. These results also suggest that ionizing a molecule can even enhance the partitioning in a collapsed, rather hydrophobic gel, which strongly challenges the traditional simplistic reasoning.
响应性聚合物膜和水凝胶在水溶液中对带电分子的吸收和吸附对于软功能材料的开发至关重要。在此,我们使用显式水分子动力学模拟研究了简单单原子(Na、K、Cs、Cl、I)和一种分子离子(4-硝基苯酚盐;NP)在致密、电中性的聚(N-异丙基丙烯酰胺)膜中的分配情况。在主要为疏水的环境中,水分布在多分散水纳米团簇网络中。平均团簇大小决定了简单离子的平均静电自能,这些离子更倾向于深深驻留在团簇内部;因此,我们发现分配比≃10,比使用均匀介电常数的简单玻恩模型预期的要大得多。尽管水团簇形状不规则,但我们观察到它们相对于周围环境具有普遍的负静电势,这与水的液-气界面情况相同。我们发现这种电势在对称单原子盐的情况下被隐藏,由于较大带电分子的弱水合作用和对界面亲和力的增加,它会极大地影响其转移自由能。因此,与简单离子形成鲜明对比的是,分子离子NP的分配比可能远大于1,≃10 - 30(取决于阳离子类型),甚至比单价盐高出10倍,这解释了最近在致密聚合物网络中催化NP还原反应动力学增强的观察结果。这些结果还表明,使分子电离甚至可以增强其在塌陷的、相当疏水的凝胶中的分配,这强烈挑战了传统的简单推理。