Drug Product Development , AbbVie Inc. , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States.
Advanced Photon Sources , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States.
Mol Pharm. 2019 Nov 4;16(11):4751-4754. doi: 10.1021/acs.molpharmaceut.9b00651. Epub 2019 Oct 1.
Amorphous solid dispersions (ASDs) are new formulations currently being used in pharmaceutical industry. The ASDs, in which amorphous drug and polymeric excipients are intimately mixed at the molecular level, exhibit dramatically enhanced solubility and dissolution characteristics relative to their crystalline drug counterparts. In the process of achieving an ever-increasing drug loading (DL), it is noticed, however, that the drug release profile deteriorates significantly beyond a certain DL. As an example, a ritonavir-copovidone ASD achieves continuous and full drug release when DL ≤ 25 wt %. The release drops at 30 wt % and when DL ≥ 35 wt % there is virtually no drug release, behaving like a pure amorphous drug. In this Communication, the phase miscibility of ASD thin films has been investigated by synchrotron X-ray fluorescence (XRF) imaging to elucidate the mechanism for the unique change in the extent of drug release as a function of DL. It is found that the drug release profile correlates well with the amorphous-amorphous phase separation (AAPS) onset. At a lower drug loading (up to 20 wt %), it takes more than 12 h for AAPS to happen while in sharp contrast, it only needs less than 10 min for DL ≥ 32.5 wt %. During AAPS, amorphous drug accumulates on the surface of the film, which prevents further dissolution from the interior of the ASD. The current study provides a mechanistic understanding of the confounding drug release profile of ASDs as a function of DL and opens the door for studying drug-excipient (e.g., polymer, surfactant) interactions via XRF imaging in the future.
无定形固体分散体(ASD)是制药行业目前正在使用的新型制剂。ASD 中,无定形药物和聚合物赋形剂在分子水平上紧密混合,与它们的结晶药物对应物相比,表现出显著增强的溶解度和溶解特性。然而,在实现不断增加的药物负载(DL)的过程中,人们注意到,超过一定的 DL 时,药物释放曲线会显著恶化。例如,当 DL≤25wt%时,利托那韦-共聚维酮 ASD 实现了连续和完全的药物释放。当 DL 为 30wt%时,释放会下降,而当 DL≥35wt%时,几乎没有药物释放,表现得像纯无定形药物。在本通讯中,通过同步加速器 X 射线荧光(XRF)成像研究了 ASD 薄膜的相混溶性,以阐明作为 DL 函数的药物释放程度的独特变化的机制。结果发现,药物释放曲线与无定形-无定形相分离(AAPS)起始密切相关。在较低的药物负载(高达 20wt%)下,AAPS 需要超过 12 小时才能发生,而与之形成鲜明对比的是,当 DL≥32.5wt%时,仅需要不到 10 分钟。在 AAPS 期间,无定形药物在薄膜表面积聚,这阻止了进一步从 ASD 内部溶解。目前的研究提供了对 ASD 作为 DL 函数的令人困惑的药物释放曲线的机制理解,并为未来通过 XRF 成像研究药物-赋形剂(例如聚合物、表面活性剂)相互作用开辟了道路。