Institute of Aquaculture, University of Stirling, Stirling, UK.
Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, UK.
Glob Chang Biol. 2019 Dec;25(12):4105-4115. doi: 10.1111/gcb.14818. Epub 2019 Sep 25.
Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO ) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild-type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high-resolution electron backscatter diffraction and carbon isotope analyses (as δ C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification.
商业贝类养殖容易受到海洋酸化的影响,这是由于二氧化碳(CO)在海洋中的吸收以及陆地径流和海平面上升导致的沿海酸化造成的。这些环境酸化的驱动因素对生物矿化有有害影响。我们研究了悉尼岩蚝(Saccostrea glomerata)选择性繁殖和野生型家族的贝壳生物矿化,这些蚝在养殖租约中的河口养殖,这些租约的环境酸化程度不同。对比鲜明的河口 pH 范围使我们能够确定贝壳生长的机制以及该物种对当代环境酸化的脆弱性。确定碳的来源、碳吸收的机制以及碳在生物矿化形成中的利用是理解贝类养殖对当代和未来环境酸化脆弱性的关键。因此,我们使用高分辨率电子背散射衍射和碳同位素分析(如 δC)来表征生活在沿海酸化栖息地中的 S. glomerata 的壳中的晶体学和碳吸收。我们表明,为快速生长而选择性繁殖的蚝家族和为抗病性而选择的家族可以改变其方解石晶体生物矿化的机制,从而提高对酸化的适应能力。S. glomerata 在其河口栖息地对酸化的反应为未来气候变化条件下软体动物贝壳生长的机制提供了重要的见解。重要的是,我们表明,在蚝中进行选择性繁殖可能是一种重要的全球缓解策略,以维持可持续的贝类养殖,以抵御未来因栖息地酸化而导致的气候变化。