Suppr超能文献

染色质拓扑结构、凝聚物和基因调控:范式转变还是只是一个阶段?

Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA

Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.

出版信息

Development. 2019 Sep 25;146(19):dev182766. doi: 10.1242/dev.182766.

Abstract

In the past decade, two major advances in our understanding of nuclear organization have taken the field of gene regulation by storm. First, technologies that can analyze the three-dimensional conformation of chromatin have revealed how the genome is organized and have provided novel insights into how regulatory regions in the genome interact. Second, the recognition that many proteins can form membraneless compartments through liquid-liquid phase separation (LLPS) has challenged long-standing notions of how proteins within the nucleus are organized and has offered a tantalizing general mechanism by which many aspects of nuclear function may be regulated. However, the functional roles of chromatin topology and LLPS in regulating gene expression remain poorly understood. These topics were discussed with great fervor during an open discussion held at a recent workshop titled 'Chromatin-based regulation of development' organized by The Company of Biologists. Here, we summarize the major points covered during this debate and discuss how they tie into current thinking in the field of gene regulation.

摘要

在过去的十年中,我们对核组织的理解取得了两项重大进展,这一领域的基因调控领域掀起了轩然大波。首先,能够分析染色质三维构象的技术揭示了基因组的组织方式,并为基因组中的调控区域如何相互作用提供了新的见解。其次,人们认识到许多蛋白质可以通过液-液相分离(LLPS)形成无膜隔间,这挑战了长期以来关于核内蛋白质如何组织的观念,并提供了一种诱人的一般机制,通过这种机制,许多核功能方面可能受到调节。然而,染色质拓扑结构和 LLPS 在调节基因表达中的功能作用仍知之甚少。在最近由 The Company of Biologists 组织的题为“基于染色质的发育调控”的研讨会上,通过一次公开讨论热烈地讨论了这些话题。在这里,我们总结了本次辩论中的主要观点,并讨论了它们如何与基因调控领域的当前思维联系起来。

相似文献

1
Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?
Development. 2019 Sep 25;146(19):dev182766. doi: 10.1242/dev.182766.
2
Protein phase separation and its role in chromatin organization and diseases.
Biomed Pharmacother. 2021 Jun;138:111520. doi: 10.1016/j.biopha.2021.111520. Epub 2021 Mar 23.
3
Liquid condensates: a new barrier to loop extrusion?
Cell Mol Life Sci. 2025 Feb 20;82(1):80. doi: 10.1007/s00018-024-05559-8.
4
HMG I/Y regulates long-range enhancer-dependent transcription on DNA and chromatin by changes in DNA topology.
Nucleic Acids Res. 2000 Jul 1;28(13):2541-50. doi: 10.1093/nar/28.13.2541.
5
The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors.
Cell Stem Cell. 2015 Sep 3;17(3):287-99. doi: 10.1016/j.stem.2015.08.007. Epub 2015 Aug 27.
7
Evidence for and against Liquid-Liquid Phase Separation in the Nucleus.
Noncoding RNA. 2019 Nov 1;5(4):50. doi: 10.3390/ncrna5040050.
8
Impacts of chromatin dynamics and compartmentalization on DNA repair.
DNA Repair (Amst). 2021 Sep;105:103162. doi: 10.1016/j.dnarep.2021.103162. Epub 2021 Jun 19.
9
Nuclear compartments, genome folding, and enhancer-promoter communication.
Int Rev Cell Mol Biol. 2015;315:183-244. doi: 10.1016/bs.ircmb.2014.11.004. Epub 2015 Feb 9.
10
The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization.
Acc Chem Res. 2024 Dec 3;57(23):3397-3406. doi: 10.1021/acs.accounts.4c00574. Epub 2024 Nov 18.

引用本文的文献

1
Tracing the evolution of single-cell 3D genomes in Kras-driven cancers.
Nat Genet. 2025 Aug 18. doi: 10.1038/s41588-025-02297-w.
3
Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes.
Biochemistry. 2025 May 20;64(10):2138-2153. doi: 10.1021/acs.biochem.5c00114. Epub 2025 May 1.
4
Predicting gene expression changes from chromatin structure modification.
NPJ Syst Biol Appl. 2025 Apr 15;11(1):34. doi: 10.1038/s41540-025-00510-4.
5
Cell type-specific 3D-genome organization and transcription regulation in the brain.
Sci Adv. 2025 Feb 28;11(9):eadv2067. doi: 10.1126/sciadv.adv2067. Epub 2025 Feb 26.
6
A biophysical basis for the spreading behavior and limited diffusion of Xist.
Cell. 2025 Feb 20;188(4):978-997.e25. doi: 10.1016/j.cell.2024.12.004. Epub 2025 Jan 16.
7
8
Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.
bioRxiv. 2024 Aug 1:2023.03.17.533124. doi: 10.1101/2023.03.17.533124.
9
Built to be imperfect.
Nat Cell Biol. 2024 Aug;26(8):1229-1230. doi: 10.1038/s41556-024-01408-9.

本文引用的文献

1
Developmentally regulated expression is robust to TAD perturbations.
Development. 2019 Sep 30;146(19):dev179523. doi: 10.1242/dev.179523.
2
Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation.
Mol Cell. 2019 Nov 7;76(3):473-484.e7. doi: 10.1016/j.molcel.2019.07.038. Epub 2019 Sep 4.
3
Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture.
Nat Genet. 2019 Aug;51(8):1263-1271. doi: 10.1038/s41588-019-0466-z. Epub 2019 Jul 29.
4
Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression.
Nat Genet. 2019 Aug;51(8):1272-1282. doi: 10.1038/s41588-019-0462-3. Epub 2019 Jul 15.
6
Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2.
Genes Dev. 2019 Jul 1;33(13-14):799-813. doi: 10.1101/gad.326488.119. Epub 2019 Jun 6.
7
Preformed chromatin topology assists transcriptional robustness of during limb development.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12390-12399. doi: 10.1073/pnas.1900672116. Epub 2019 May 30.
9
Modeling the Pathological Long-Range Regulatory Effects of Human Structural Variation with Patient-Specific hiPSCs.
Cell Stem Cell. 2019 May 2;24(5):736-752.e12. doi: 10.1016/j.stem.2019.03.004. Epub 2019 Apr 11.
10
Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization.
Cell. 2019 Mar 7;176(6):1502-1515.e10. doi: 10.1016/j.cell.2019.01.020. Epub 2019 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验