Center for Molecular Modeling , Ghent University , Tech Lane Ghent Science Park Campus A, Technologiepark 46 , 9052 Zwijnaarde , Belgium.
Laboratory of Computational Science and Modelling, Institute of Materials , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland.
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38697-38707. doi: 10.1021/acsami.9b12533. Epub 2019 Oct 9.
Thermal engineering of metal-organic frameworks for adsorption-based applications is very topical in view of their industrial potential, in particular, since heat management and thermal stability have been identified as important obstacles. Hence, a fundamental understanding of the structural and chemical features underpinning their intrinsic thermal properties is highly sought-after. Herein, we investigate the nanoscale behavior of a diverse set of frameworks using molecular simulation techniques and critically compare properties such as thermal conductivity, heat capacity, and thermal expansion with other classes of materials. Furthermore, we propose a hypothetical thermodynamic cycle to estimate the temperature rise associated with adsorption for the most important greenhouse and energy-related gases (CO and CH). This macroscopic response on the heat of adsorption connects the intrinsic thermal properties with the adsorption properties and allows us to evaluate their importance.
金属有机骨架的吸附应用热工程在其工业潜力方面非常热门,特别是因为热管理和热稳定性已被确定为重要的障碍。因此,对于其内在热性能的结构和化学特征的基本理解是非常需要的。在此,我们使用分子模拟技术研究了一组不同的骨架的纳米级行为,并对热导率、热容和热膨胀等特性与其他类材料进行了严格的比较。此外,我们提出了一个假设的热力学循环来估计与最主要的温室气体和能源相关的气体(CO 和 CH)吸附相关的温度升高。这种对吸附热的宏观响应将内在热性能与吸附性能联系起来,并使我们能够评估它们的重要性。