文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

描述混合人群马颈椎关节突局部的骨变化。

Characterization of bony changes localized to the cervical articular processes in a mixed population of horses.

机构信息

Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America.

Texas A&M University, Department of Veterinary Pathobiology, Veterinary Medicine and Biomedical Sciences, College Station, Texas, United States of America.

出版信息

PLoS One. 2019 Sep 26;14(9):e0222989. doi: 10.1371/journal.pone.0222989. eCollection 2019.


DOI:10.1371/journal.pone.0222989
PMID:31557207
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6762202/
Abstract

The objectives of this observational, cross-sectional study were to characterize and establish the prevalence of osseous proliferation of articular surfaces, joint margins and adjacent soft tissue attachments (i.e., joint capsule and deep spinal muscles) in a mixed population of horses of variable ages, sizes, and breeds to better capture the full spectrum of disease affecting the cervical articular processes. Cranial and caudal articular processes of the cervical and first three thoracic vertebrae (C2-T3) from 55 horses without a primary complaint of neck pain were evaluated for the presence and severity of abnormal bony changes. Data were analyzed to compare alterations in joint margin quadrants, paired articular surfaces within a synovial articulation, left-right laterality, and vertebral level distributions and to determine associations with age, wither height and sex. Seventy-two percent of articular processes had bony changes that were considered abnormal. Osteophyte formation was the most common bony change noted. Overall grades of severity included: normal (28%), mild (45%), moderate (22%), and severe (5%). The highest prevalence of mild changes was localized to the C3-C6 vertebral levels; moderate changes to C6-T2; and severe changes to C2-C3 and C6-T2. Most paired articular surfaces and left-right grades of severity were not significantly different. The grade of osseous pathology was positively associated with both age and wither height. A high prevalence and wide variety of abnormal bony changes of varying severity were found in articular processes across all vertebral levels. The clinical significance of the described lesions is unknown, but the findings are expected to enhance the reporting of articular process and periarticular changes noted on advanced diagnostic imaging of the equine cervical and cranial thoracic vertebral regions.

摘要

本观察性、横断面研究的目的是描述和确定在不同年龄、体型和品种的混合马群中关节表面、关节缘和相邻软组织附着处(即关节囊和深部脊柱肌肉)的骨增生的特征和流行率,以便更好地捕捉影响颈椎关节突的疾病的全貌。评估了 55 匹无颈部疼痛主要主诉的马的颈椎和第一至第三胸椎(C2-T3)的颅侧和尾侧关节突,以确定异常骨变化的存在和严重程度。对关节缘象限、滑膜关节内的成对关节表面、左右侧偏性以及椎骨水平分布的改变进行数据分析,并确定与年龄、肩高和性别相关的改变。72%的关节突有被认为异常的骨变化。骨赘形成是最常见的骨变化。总体严重程度分级包括:正常(28%)、轻度(45%)、中度(22%)和重度(5%)。轻度变化的高发区域位于 C3-C6 椎骨水平;中度变化见于 C6-T2;重度变化见于 C2-C3 和 C6-T2。大多数成对关节表面和左右侧严重程度分级无显著差异。骨病理学的严重程度与年龄和肩高呈正相关。在所有椎骨水平的关节突中发现了广泛的、严重程度不同的异常骨变化的高患病率和多样性。这些病变的临床意义尚不清楚,但预计会增强对马颈椎和颅胸区域高级影像学检查中关节突和关节周围变化的报告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/7134aa79d089/pone.0222989.g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/95c6fe2ece7f/pone.0222989.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/232086d1a70e/pone.0222989.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/5fe3f71f92b5/pone.0222989.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/fbc92ffa3c05/pone.0222989.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/468bb0f6c289/pone.0222989.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/cc47f8fd7b5e/pone.0222989.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/49415029d145/pone.0222989.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/72f4cd2177f0/pone.0222989.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/37ecf3410cc1/pone.0222989.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/a285722ec281/pone.0222989.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/805a57e0a115/pone.0222989.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/321a606bb4e9/pone.0222989.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/950dfd794279/pone.0222989.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/a52e724fe7e7/pone.0222989.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/6d9fcf7da095/pone.0222989.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/ae3074c16f95/pone.0222989.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/cbadd5cc46b3/pone.0222989.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/4a697f72293c/pone.0222989.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/d16ebcdc8d5c/pone.0222989.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/3ad37b468108/pone.0222989.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/455e2ff563d2/pone.0222989.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/519193786e89/pone.0222989.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/81e33854fd72/pone.0222989.g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/13dcb8c065d8/pone.0222989.g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/7134aa79d089/pone.0222989.g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/95c6fe2ece7f/pone.0222989.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/232086d1a70e/pone.0222989.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/5fe3f71f92b5/pone.0222989.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/fbc92ffa3c05/pone.0222989.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/468bb0f6c289/pone.0222989.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/cc47f8fd7b5e/pone.0222989.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/49415029d145/pone.0222989.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/72f4cd2177f0/pone.0222989.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/37ecf3410cc1/pone.0222989.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/a285722ec281/pone.0222989.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/805a57e0a115/pone.0222989.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/321a606bb4e9/pone.0222989.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/950dfd794279/pone.0222989.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/a52e724fe7e7/pone.0222989.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/6d9fcf7da095/pone.0222989.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/ae3074c16f95/pone.0222989.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/cbadd5cc46b3/pone.0222989.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/4a697f72293c/pone.0222989.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/d16ebcdc8d5c/pone.0222989.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/3ad37b468108/pone.0222989.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/455e2ff563d2/pone.0222989.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/519193786e89/pone.0222989.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/81e33854fd72/pone.0222989.g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/13dcb8c065d8/pone.0222989.g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fae/6762202/7134aa79d089/pone.0222989.g025.jpg

相似文献

[1]
Characterization of bony changes localized to the cervical articular processes in a mixed population of horses.

PLoS One. 2019-9-26

[2]
Synovial folds in equine articular process joints.

Equine Vet J. 2012-11-12

[3]
Radiographic findings and anatomical variations of the caudal cervical area in horses with neck pain and ataxia: case-control study on 116 horses.

Vet Rec. 2020-10-31

[4]
PREVALENCE OF ANATOMICAL VARIATION OF THE SIXTH CERVICAL VERTEBRA AND ASSOCIATION WITH VERTEBRAL CANAL STENOSIS AND ARTICULAR PROCESS OSTEOARTHRITIS IN THE HORSE.

Vet Radiol Ultrasound. 2016-5

[5]
Pathology of the vertebral column of horses with cervical static stenosis.

Vet Pathol. 1986-7

[6]
Primary phenotypic features associated with caudal neck pathology in warmblood horses.

J Vet Intern Med. 2024

[7]
Radiological prevalence of osteoarthritis of the cervical region in 104 performing Warmblood jumpers.

Equine Vet J. 2021-9

[8]
Forelimb lameness associated with radiographic abnormalities of the cervical vertebrae.

Equine Vet J. 1993-9

[9]
Radiographic retrospective study of the caudal cervical articular process joints in the horse.

Equine Vet J. 2009-7

[10]
Osteoarthritis of the thoracolumbar synovial intervertebral articulations: clinical and radiographic features in 77 horses with poor performance and back pain.

Equine Vet J. 2009-2

引用本文的文献

[1]
Evaluation of the feasibility of equine in-vivo ultrasound technique for the medial branch of the dorsal ramus of the cervical spinal nerves.

Vet Q. 2024-12

[2]
Ultrasound-guided caudal cervical articular process arthrocentesis is accurate in live horses with and without arthropathy.

Equine Vet J. 2025-3

[3]
Congenital variants of the ventral laminae of the sixth and seventh cervical vertebrae are not associated with clinical signs or other radiological abnormalities of the cervicothoracic region in Warmblood horses.

Equine Vet J. 2025-3

[4]
Characterization of the Caudal Ventral Tubercle in the Sixth Cervical Vertebra in Modern .

Animals (Basel). 2023-7-22

[5]
Ultrasound-guided injections of the equine head and neck: review and expert opinion.

J Equine Sci. 2021-12

[6]
Dangerous Behavior and Intractable Axial Skeletal Pain in Performance Horses: A Possible Role for Ganglioneuritis (14 Cases; 2014-2019).

Front Vet Sci. 2021-12-10

[7]
Equine Cervical Pain and Dysfunction: Pathology, Diagnosis and Treatment.

Animals (Basel). 2021-2-6

本文引用的文献

[1]
An equine cadaver study investigating the relationship between cervical flexion, nuchal ligament elongation and pressure at the first and second cervical vertebra.

Vet J. 2019-8-7

[2]
Variation in tibial tuberosity lateralization and distance from the tibiofemoral joint line: An anatomic study.

Knee. 2018-6

[3]
Structure and Functions of Blood Vessels and Vascular Niches in Bone.

Stem Cells Int. 2017

[4]
From maturity to old age: tasks of daily life require a different muscle use in horses.

Comp Exerc Physiol. 2014

[5]
Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

Ther Adv Musculoskelet Dis. 2016-12

[6]
Ultrasound-guided approach to the cervical articular process joints in horses: a validation of the technique in cadavers.

Vet Comp Orthop Traumatol. 2017-5-22

[7]
EX VIVO COMPUTED TOMOGRAPHIC EVALUATION OF MORPHOLOGY VARIATIONS IN EQUINE CERVICAL VERTEBRAE.

Vet Radiol Ultrasound. 2016-9

[8]
PREVALENCE OF ANATOMICAL VARIATION OF THE SIXTH CERVICAL VERTEBRA AND ASSOCIATION WITH VERTEBRAL CANAL STENOSIS AND ARTICULAR PROCESS OSTEOARTHRITIS IN THE HORSE.

Vet Radiol Ultrasound. 2016-5

[9]
Cervical Vertebral Lesions in Equine Stenotic Myelopathy.

Vet Pathol. 2015-9

[10]
Risk factors in cervical spondylosis.

J Clin Orthop Trauma. 2014-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索