Anh Cao Kiet Le, Arif Aditya F, Kamikubo Kazuki, Izawa Takafumi, Iwasaki Hideharu, Ogi Takashi
Department of Chemical Engineering, Graduate School of Engineering , Hiroshima University , 1-4-1 Kagamiyama, Higashi-Hiroshima , Hiroshima 739-8527 , Japan.
Department of New Investment , P. T. Rekayasa Industri Holding Company , Jl. Kalibata Timur I No. 36 , Jakarta 12740 , Indonesia.
Langmuir. 2019 Oct 22;35(42):13681-13692. doi: 10.1021/acs.langmuir.9b02599. Epub 2019 Oct 8.
Core-shell particles are desirable for many applications, but the precise design and control of their structure remains a great challenge. In this work, we developed a strategy to fabricate carbon-coated SiO (SiO@C) core-shell particles via a sol-gel method using the simultaneous hydrolysis-condensation of tetramethyl orthosilicate (TMOS), the polymerization of 3-aminophenol and formaldehyde in the presence of ammonia as a basic catalyst, and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant in the mixed solution of water and methanol followed by the carbonization process. Results from this study provide new insight into the design of core-shell particles by using TMOS as an effective silica precursor for the first time with a well-controlled reaction rate and spherical morphology. To obtain an in-depth understanding of the formation of core-shell structure, a possible mechanism is also proposed in this article. When tested as an anode material for lithium ion batteries (LIBs), the obtained SiO@C particles delivered a reversible capacity of 509.2 mAh g at a current density of 100 mA g. This electrochemical performance is significantly better than those of similar composites without the core-shell structure. The capacity retention after 100 cycles was approximately 80%. These results suggest great promise for the proposed SiO@C particles with core-shell structure, which may have potential applications in the improvement of various energy-storage materials.
核壳颗粒在许多应用中都很理想,但对其结构进行精确设计和控制仍然是一个巨大的挑战。在这项工作中,我们开发了一种策略,通过溶胶-凝胶法制备碳包覆二氧化硅(SiO@C)核壳颗粒,该方法使用原硅酸四甲酯(TMOS)的同时水解缩合、3-氨基苯酚和甲醛在作为碱性催化剂的氨存在下的聚合,以及十六烷基三甲基溴化铵(CTAB)作为阳离子表面活性剂,在水和甲醇的混合溶液中进行,随后进行碳化过程。这项研究的结果首次以可控的反应速率和球形形态,为使用TMOS作为有效的二氧化硅前驱体来设计核壳颗粒提供了新的见解。为了深入了解核壳结构的形成,本文还提出了一种可能的机制。当作为锂离子电池(LIBs)的负极材料进行测试时,所获得的SiO@C颗粒在100 mA g的电流密度下提供了509.2 mAh g的可逆容量。这种电化学性能明显优于那些没有核壳结构的类似复合材料。100次循环后的容量保持率约为80%。这些结果表明,所提出的具有核壳结构的SiO@C颗粒具有很大的前景,可能在各种储能材料的改进方面具有潜在应用。