Suppr超能文献

基于质谱的蛋白质生物标志物发现的特征选择与机器学习方法研究进展

[Research progress of feature selection and machine learning methods for mass spectrometry-based protein biomarker discovery].

作者信息

Xu Kaikun, Han Mingfei, Huang Chuanxi, Chang Cheng, Zhu Yunping

机构信息

Beijing Institute of Lifeomics, Beijing 102206, China.

State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China.

出版信息

Sheng Wu Gong Cheng Xue Bao. 2019 Sep 25;35(9):1619-1632. doi: 10.13345/j.cjb.190064.

Abstract

With the development of mass spectrometry technologies and bioinformatics analysis algorithms, disease research-driven human proteome project (HPP) is advancing rapidly. Protein biomarkers play critical roles in clinical applications and the biomarker discovery strategies and methods have become one of research hotspots. Feature selection and machine learning methods have good effects on solving the "dimensionality" and "sparsity" problems of proteomics data, which have been widely used in the discovery of protein biomarkers. Here, we systematically review the strategy of protein biomarker discovery and the frequently-used machine learning methods. Also, the review illustrates the prospects and limitations of deep learning in this field. It is aimed at providing a valuable reference for corresponding researchers.

摘要

随着质谱技术和生物信息学分析算法的发展,以疾病研究为驱动的人类蛋白质组计划(HPP)正在迅速推进。蛋白质生物标志物在临床应用中发挥着关键作用,生物标志物的发现策略和方法已成为研究热点之一。特征选择和机器学习方法在解决蛋白质组学数据的“维度”和“稀疏性”问题方面具有良好效果,已广泛应用于蛋白质生物标志物的发现。在此,我们系统地综述了蛋白质生物标志物的发现策略和常用的机器学习方法。此外,本综述还阐述了深度学习在该领域的前景和局限性。旨在为相关研究人员提供有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验