Suppr超能文献

多通道流系统改善传质提高电池电极脱盐性能。

Enhancement in Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System.

机构信息

School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process , Seoul National University (SNU) , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Republic of Korea.

Department of Biological and Chemical Engineering, College of Science and Technology , Hongik University , 2639 Sejong-ro , Sejong-si 30016 , Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 9;11(40):36580-36588. doi: 10.1021/acsami.9b10003. Epub 2019 Sep 27.

Abstract

Desalination technologies have heavily been investigated to utilize the abundant salt water on Earth due to the global freshwater shortage. During recent years, the desalination battery (DB) has attracted attention for its low-cost, eco-friendly, and energy-efficient characteristics. However, the current DB system is subject to inevitable performance degradation because of the mass-transfer limitation at the electrode-electrolyte interface, particularly when the system is used to treat brackish water. Here, we present a novel strategy to overcome the intrinsic mass-transfer limitation of DB in brackish water using an effective cell design based on a multichannel flow system. Compared to the conventional DB that consists of one feed channel, the multichannel desalination battery (MC-DB) is configured using two side channels introducing a highly concentrated solution to the electrodes and one middle feed channel for water desalination. The MC-DB showed a desalination capacity of 52.9 mg g and a maximum salt removal rate of 0.0576 mg g s (production rate of 42.3 g m h) when a salinity gradient between the feed streams in the middle (10 mM NaCl) and side (1000 mM NaCl) channels was present, which were 3-fold higher than those in the case with no salinity gradient. In addition, the high concentration solution in the side channel significantly enhanced the rate capability of MC-DB, allowing the system to operate under a high current density of 40 A m with a desalination capacity of 34.1 mg g. Considering the effect of electrolyte concentration on the battery electrode performance through electrochemical characterization, the highly saline medium at the side channel in the MC-DB creates an optimal environment for the battery electrode to fully capitalize the high desalination capacity, salt removal rate, and capacity retention of the battery electrodes.

摘要

脱盐技术因其能够利用地球上丰富的咸水资源而受到广泛关注,以解决全球淡水短缺问题。近年来,由于其低成本、环保和节能的特点,脱盐电池(DB)引起了人们的关注。然而,由于电极-电解质界面的传质限制,当前的 DB 系统不可避免地会出现性能下降,特别是在用于处理微咸水时。在这里,我们提出了一种新的策略,通过基于多通道流系统的有效电池设计来克服 DB 在微咸水中的固有传质限制。与由一个进料通道组成的传统 DB 相比,多通道脱盐电池(MC-DB)采用两个侧通道进行配置,将高浓度溶液引入电极,并采用一个中间进料通道进行水脱盐。当中间进料通道(10 mM NaCl)和侧通道(1000 mM NaCl)之间存在盐度梯度时,MC-DB 的脱盐能力为 52.9 mg g,最大盐去除率为 0.0576 mg g s(产率为 42.3 g m h),比没有盐度梯度时提高了 3 倍。此外,侧通道中的高浓度溶液显著提高了 MC-DB 的倍率性能,使系统能够在 40 A m 的高电流密度下运行,脱盐能力为 34.1 mg g。通过电化学特性研究电解质浓度对电池电极性能的影响,MC-DB 中侧通道的高盐度环境为电池电极创造了一个最佳环境,使电池电极能够充分利用高脱盐能力、盐去除率和电池电极的容量保持率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验