Suppr超能文献

用于癌症治疗的计算机辅助药物重新利用:挑战抗癌靶点的方法与机遇

Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets.

作者信息

Mottini Carla, Napolitano Francesco, Li Zhongxiao, Gao Xin, Cardone Luca

机构信息

Department of Tumour Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Structural and Functional Bioinformatic Group, Computational Bioscience Research Center Computer, Electrical and Mathematical Sciences and Engineering Division, KAUST, Saudi Arabia.

出版信息

Semin Cancer Biol. 2021 Jan;68:59-74. doi: 10.1016/j.semcancer.2019.09.023. Epub 2019 Sep 25.

Abstract

Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.

摘要

尽管全球学术界和制药界在研究方面付出了巨大努力,但目前的抗癌疗法仅在少数肿瘤病例中实现了有效治疗。肿瘤学中的一些术语,如“大杀手”(用于识别死亡率仍然很高的肿瘤)或“不可成药的癌症靶点”以及化疗耐药性,代表了当前癌症治疗的困境。此外,转移、肿瘤微环境、肿瘤异质性、代谢适应和免疫治疗耐药性是控制肿瘤对治疗反应的重要特征,但仍然缺乏有效的治疗方法或调节剂。在这种情况下,肿瘤学中的药物研发效率和药物疗效似乎已达到瓶颈,所谓的药物重新利用,即使用已在临床使用的旧药物用于不同的治疗适应症,是一种改善癌症治疗的有吸引力的策略。药物重新利用的机会通常基于偶然观察或耗时的临床前药物筛选,而这些筛选往往不是基于假设驱动的。相比之下,计算机辅助药物重新利用是一种新兴的、基于假设驱动的方法,它利用了大数据。事实上,“组学”技术的广泛应用、改进的数据存储、数据解读、机器学习算法和计算建模,都为癌症的生物学机制和药物作用模式提供了前所未有的认识,为疾病相关数据和药物相关数据提供了广泛的可用性。这提供了一个机会,通过具有时间和成本效益的方法生成计算药物网络,以在计算机上预测已批准药物针对相关癌症靶点的疗效,以及选择反应更好的患者或疾病生物标志物。在这里,我们将回顾选定的疾病相关数据以及用于计算机辅助药物重新利用以对抗癌症治疗中已验证靶点的计算工具,重点关注癌症中致癌信号通路的激活。我们将讨论计算机辅助药物重新利用如何有望在短期内改善我们的抗癌药物库,并可能克服现代癌症治疗针对肿瘤学中新旧治疗靶点的某些局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验