Suppr超能文献

通过体外循环输送间充质基质细胞对产后神经发生的影响。

Impact of Mesenchymal Stromal Cell Delivery Through Cardiopulmonary Bypass on Postnatal Neurogenesis.

机构信息

Children's National Heart Institute, Children's National Hospital, Washington, DC; Center for Neuroscience Research, Children's National Hospital, Washington, DC.

George Washington University School of Medicine and Health Science, Washington, DC.

出版信息

Ann Thorac Surg. 2020 Apr;109(4):1274-1281. doi: 10.1016/j.athoracsur.2019.08.036. Epub 2019 Sep 26.

Abstract

BACKGROUND

Neurodevelopmental impairment is an important challenge for survivors after neonatal surgery with cardiopulmonary bypass (CPB). The subventricular zone, where most neural stem/progenitors originate, plays a critical role in cortical maturation of the frontal lobe. Promoting neurogenesis in the subventricular zone is therefore a potential therapeutic target for preserving cortical growth. Mesenchymal stromal cells (MSCs) promote endogenous regeneration in the rodent brain. We investigated the impact of MSC delivery through CPB on neural stem/progenitor cells and neuroblasts (ie, young neurons) in the piglet subventricular zone.

METHODS

Two-week-old piglets (n = 12) were randomly assigned to one of three groups: (1) control, (2) deep hypothermic circulatory arrest, and (3) circulatory arrest, followed by MSC administration. MSCs (10 × 10 per kg) were delivered through CPB during the rewarming period. Neural stem/progenitors, proliferating cells, and neuroblasts were identified with immunohistochemistry at 3 hours after CPB.

RESULTS

CPB-induced insults caused an increased proliferation of neural stem/progenitors (P < .05). MSC delivery reduced the acute proliferation. MSC treatment increased the number of neuroblasts in the outer region of the subventricular zone (P < .05) where they form migrating chains toward the frontal lobe. Conversely, the thickness of the neuroblast-dense band along the lateral ventricle was reduced after treatment (P < .05). These findings suggest that MSC treatment changes neuroblast distribution within the subventricular zone.

CONCLUSIONS

MSC delivery through CPB has the potential to mitigate effects of CPB on neural stem/progenitor cells and to promote migration of neuroblasts. Further investigation is necessary to determine the long-term effect of MSC treatment during CPB on postnatal neurogenesis.

摘要

背景

心肺转流术(CPB)后新生儿手术的神经发育障碍是一个重要挑战。室下区是大多数神经干细胞/祖细胞的起源地,在额叶皮质成熟中起着关键作用。因此,促进室下区的神经发生是保留皮质生长的潜在治疗靶点。间充质基质细胞(MSCs)促进啮齿动物大脑内源性再生。我们研究了通过 CPB 输送 MSC 对猪仔室下区神经干细胞/祖细胞和神经母细胞(即年轻神经元)的影响。

方法

将 2 周龄的小猪(n=12)随机分为三组:(1)对照组;(2)深低温停循环;(3)停循环后 MSC 给药。MSC(10×10 个/kg)在复温期通过 CPB 输送。CPB 后 3 小时,通过免疫组织化学鉴定神经干细胞/祖细胞、增殖细胞和神经母细胞。

结果

CPB 引起的损伤导致神经干细胞/祖细胞增殖增加(P<0.05)。MSC 输送减少了急性增殖。MSC 治疗增加了室下区外层神经母细胞的数量(P<0.05),它们形成向额叶迁移的链。相反,治疗后沿侧脑室的神经母细胞密集带变薄(P<0.05)。这些发现表明,MSC 治疗改变了室下区神经母细胞的分布。

结论

CPB 期间通过 CPB 输送 MSC 有可能减轻 CPB 对神经干细胞/祖细胞的影响,并促进神经母细胞的迁移。需要进一步研究确定 CPB 期间 MSC 治疗对产后神经发生的长期影响。

相似文献

1
Impact of Mesenchymal Stromal Cell Delivery Through Cardiopulmonary Bypass on Postnatal Neurogenesis.
Ann Thorac Surg. 2020 Apr;109(4):1274-1281. doi: 10.1016/j.athoracsur.2019.08.036. Epub 2019 Sep 26.
2
Impact of Cardiopulmonary Bypass on Neurogenesis and Cortical Maturation.
Ann Neurol. 2021 Dec;90(6):913-926. doi: 10.1002/ana.26235. Epub 2021 Oct 13.
3
Dose Effect of Mesenchymal Stromal Cell Delivery Through Cardiopulmonary Bypass.
Ann Thorac Surg. 2023 Dec;116(6):1337-1345. doi: 10.1016/j.athoracsur.2022.07.035. Epub 2022 Aug 8.
4
Fetal mesenchymal stem cells ameliorate acute lung injury in a rat cardiopulmonary bypass model.
J Thorac Cardiovasc Surg. 2017 Mar;153(3):726-734. doi: 10.1016/j.jtcvs.2016.10.014. Epub 2016 Oct 24.
7
Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice.
Stem Cell Rev Rep. 2011 Jun;7(2):404-12. doi: 10.1007/s12015-010-9190-x.
9
Therapeutic hypothermia modulates the neurogenic response of the newborn piglet subventricular zone after hypoxia-ischemia.
Pediatr Res. 2024 Jan;95(1):112-119. doi: 10.1038/s41390-023-02751-7. Epub 2023 Aug 12.

引用本文的文献

1
Neurodevelopmental outcomes in congenital heart disease: modifiable and nonmodifiable substrates.
Curr Opin Cardiol. 2025 Jul 1;40(4):259-264. doi: 10.1097/HCO.0000000000001218. Epub 2025 May 13.
4
A comparative study of mouse bone marrow mesenchymal stem cells isolated using three easy-to-perform approaches.
FEBS Open Bio. 2022 Dec;12(12):2154-2165. doi: 10.1002/2211-5463.13493. Epub 2022 Oct 17.
5
Commentary: Using cardiopulmonary bypass to deliver cellular therapy to the brain.
JTCVS Open. 2021 Mar 13;6:222-223. doi: 10.1016/j.xjon.2021.03.005. eCollection 2021 Jun.
6
Dose Effect of Mesenchymal Stromal Cell Delivery Through Cardiopulmonary Bypass.
Ann Thorac Surg. 2023 Dec;116(6):1337-1345. doi: 10.1016/j.athoracsur.2022.07.035. Epub 2022 Aug 8.
7
The Current Status of Neuroprotection in Congenital Heart Disease.
Children (Basel). 2021 Dec 2;8(12):1116. doi: 10.3390/children8121116.
8
Influence of administration of mesenchymal stromal cell on pediatric oxygenator performance and inflammatory response.
JTCVS Open. 2021 Mar;5:99-107. doi: 10.1016/j.xjon.2021.02.003. Epub 2021 Feb 18.
9
Tissue-specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3-ROBO1.
Stem Cells Transl Med. 2020 Sep;9(9):1102-1113. doi: 10.1002/sctm.19-0448. Epub 2020 May 29.

本文引用的文献

1
Cortical Dysmaturation in Congenital Heart Disease.
Trends Neurosci. 2019 Mar;42(3):192-204. doi: 10.1016/j.tins.2018.12.003. Epub 2019 Jan 4.
2
The neonatal brain in critical congenital heart disease: Insights and future directions.
Neuroimage. 2019 Jan 15;185:776-782. doi: 10.1016/j.neuroimage.2018.05.045. Epub 2018 May 19.
4
Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights Into Altered Brain Maturation.
Circ Res. 2017 Mar 17;120(6):960-977. doi: 10.1161/CIRCRESAHA.116.309048.
5
Abnormal neurogenesis and cortical growth in congenital heart disease.
Sci Transl Med. 2017 Jan 25;9(374). doi: 10.1126/scitranslmed.aah7029.
6
Extensive migration of young neurons into the infant human frontal lobe.
Science. 2016 Oct 7;354(6308). doi: 10.1126/science.aaf7073.
7
Neurodevelopmental Outcomes in Children With Congenital Heart Disease-What Can We Impact?
Pediatr Crit Care Med. 2016 Aug;17(8 Suppl 1):S232-42. doi: 10.1097/PCC.0000000000000800.
8
Prolonged White Matter Inflammation After Cardiopulmonary Bypass and Circulatory Arrest in a Juvenile Porcine Model.
Ann Thorac Surg. 2015 Sep;100(3):1030-7. doi: 10.1016/j.athoracsur.2015.04.017. Epub 2015 Jul 27.
9
Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.
Circulation. 2015 Apr 14;131(15):1313-23. doi: 10.1161/CIRCULATIONAHA.114.013051. Epub 2015 Mar 11.
10
Mesenchymal stromal cells: sensors and switchers of inflammation.
Cell Stem Cell. 2013 Oct 3;13(4):392-402. doi: 10.1016/j.stem.2013.09.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验