Defoe D M, Besharse J C
J Neurosci. 1985 Apr;5(4):1023-34. doi: 10.1523/JNEUROSCI.05-04-01023.1985.
We have used a cytochemical technique for labeling freeze-fractured tissues (Pinto da Silva, P., C. Parkison, and N. Dwyer (1981) Proc. Natl. Acad. Sci. U.S.A. 78: 343-347) to examine the distribution of immunoreactive opsin in rod photoreceptor membranes. Aldehyde-fixed retinas of African clawed frogs (Xenopus laevis) embedded in a cross-linked protein matrix were frozen and fractured at -196 degrees C, then thawed and labeled with biotinylated sheep anti-cow opsin IgG followed by avidin-ferritin. In thin sections of plastic-embedded retinas, rod outer segment (ROS) disc membranes exposed by fracturing bound specific antibody intensely and relatively uniformly. However, they differed from membranes of the inner segment as well as those of erythrocytes in that protoplasmic face leaflets did not assume an interrupted bilayer appearance and disc exoplasmic face leaflets were apparently lost during thawing. The disposition of opsin immunoreactivity in the cell membrane was highly asymmetric. Although ROS plasma membranes from which discs are elaborated labeled heavily with anti-opsin after cleavage, fractures passing along inner segment plasma membranes bound very little antibody. In cross-fractures exposing inner segment cytoplasm, we found specific labeling of Golgi complex elements, as well as both perimitochondrial and periciliary vesicles. The latter are presumed to be the vehicle shuttling newly synthesized membrane to the ROS for disc assembly. These results suggest that opsin-containing membrane is sorted out within the cell, being transported from synthetic sites to the immediate periciliary zone where localized insertion into the cell membrane takes place. Furthermore, the close correspondence of the present immunocytochemical analysis with the distribution of opsin deduced from prior quantitative freeze-fracture analysis (Besharse, J. C., and K. H. Pfenninger (1980) J. Cell Biol. 87: 451-463) offers the possibility that fracture-label may be generally useful for study of patterned membrane topography in neuronal cells.
我们采用一种细胞化学技术标记冷冻断裂组织(平托·达席尔瓦,P.,C. 帕金森,和 N. 德怀尔(1981年)《美国国家科学院院刊》78: 343 - 347),以研究视紫红质免疫反应性在视杆光感受器膜中的分布。将包埋在交联蛋白基质中的非洲爪蟾(非洲爪蟾)醛固定视网膜在 -196℃下冷冻并断裂,然后解冻,用生物素化羊抗牛视紫红质IgG标记,接着用抗生物素蛋白 - 铁蛋白标记。在塑料包埋视网膜的薄切片中,断裂暴露的视杆外段(ROS)盘膜强烈且相对均匀地结合特异性抗体。然而,它们与内段膜以及红细胞膜不同,因为原生质面小叶没有呈现出中断的双层外观,并且盘外质面小叶在解冻过程中明显丢失。视紫红质免疫反应性在细胞膜中的分布高度不对称。尽管形成盘的ROS质膜在裂解后用抗视紫红质大量标记,但沿着内段质膜的断裂结合的抗体很少。在暴露内段细胞质的交叉断裂中,我们发现高尔基体复合体成分以及线粒体外周和纤毛周小泡有特异性标记。后者被认为是将新合成的膜转运到ROS用于盘组装的载体。这些结果表明,含视紫红质的膜在细胞内被分选出来,从合成位点运输到紧邻纤毛周区域,在那里局部插入细胞膜。此外,目前的免疫细胞化学分析与先前定量冷冻断裂分析(贝沙尔塞,J. C.,和 K. H. 芬宁格(1980年)《细胞生物学杂志》87: 451 - 463)推断的视紫红质分布密切对应,这提供了断裂标记可能普遍有助于研究神经元细胞中模式化膜拓扑结构的可能性。