Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom.
Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20984-20990. doi: 10.1073/pnas.1906722116. Epub 2019 Sep 30.
Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin-Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.
植物、藻类和蓝细菌通过卡尔文-本森(Calvin-Benson,CB)循环将二氧化碳固定为有机碳。磷酸核酮糖激酶(PRK)和甘油醛 3-磷酸脱氢酶(GAPDH)是 CB 循环的关键酶,控制着羧化酶 Rubisco 的底物可用性。PRK 消耗 ATP 产生 Rubisco 底物 1,5-二磷酸核酮糖(RuBP)。GAPDH 以 NADPH 作为还原剂催化 CB 循环的还原步骤,产生甘油醛 3-磷酸(GAP),GAP 用于 RuBP 的再生,是循环的主要出口点。GAPDH 和 PRK 受到条件性无序蛋白 CP12 氧化还原状态的核心调控,CP12 与这两种酶形成三元复合物。然而,CP12 对 CB 循环调控的结构基础尚不清楚。本文中,我们展示了 CP12 如何调节 GAPDH 和 PRK 的活性。利用嗜热蓝细菌的同源物,我们通过电子晶体显微镜解析了不同辅因子和 CP12 结合的 GAPDH 晶体结构,以及三元 GAPDH-CP12-PRK 复合物的结构,揭示了 CP12 形成 N 端二硫键可预先有序排列 CP12,然后 CP12 再与 PRK 活性位点结合。我们发现 CP12 与 GAPDH 结合会影响二元和三元抑制复合物中所有 GAPDH 活性位点的底物可及性。我们的结构和生化数据解释了 CP12 如何整合来自氧化还原状态和烟酰胺二核苷酸可用性的反应来调节碳固定。