Suppr超能文献

腹腔镜袖状胃切除术 30 天后发病率和死亡率的预测:来自人工神经网络的数据。

Prediction of thirty-day morbidity and mortality after laparoscopic sleeve gastrectomy: data from an artificial neural network.

机构信息

Department of Surgery, Division of Gastrointestinal/Bariatric Surgery, University Of Minnesota, 420 Delaware St SE, MMC 195, Minneapolis, MN, 55455, USA.

Division of Gastroenterology, Hepatology and Nutrition, Section of Interventional and Advanced Endoscopy, Department of Medicine, University of Minnesota, Minneapolis, USA.

出版信息

Surg Endosc. 2020 Aug;34(8):3590-3596. doi: 10.1007/s00464-019-07130-0. Epub 2019 Sep 30.

Abstract

BACKGROUND

Multiple patient factors may convey increased risk of 30-day morbidity and mortality after laparoscopic vertical sleeve gastrectomy (LVSG). Assessing the likelihood of short-term morbidity is useful for both the bariatric surgeon and patient. Artificial neural networks (ANN) are computational algorithms that use pattern recognition to predict outcomes, providing a potentially more accurate and dynamic model relative to traditional multiple regression. Using a comprehensive national database, this study aims to use an ANN to optimize the prediction of the composite endpoint of 30-day readmission, reoperation, reintervention, or mortality, after LVSG.

METHODS

A cohort of 101,721 LVSG patients was considered for analysis from the 2016 Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program national dataset. Select patient factors were chosen a priori as simple, pertinent and easily obtainable, and their association with the 30-day endpoint was assessed. Those factors with a significant association on both bivariate and multivariate nominal logistic regression analysis were incorporated into a back-propagation ANN with three nodes each assigned a training value of 0.333, with k-fold internal validation. Logistic regression and ANN models were compared using area under receiver-operating characteristic curves (AUROC).

RESULTS

Upon bivariate analysis, factors associated with 30-day complications were older age (P = 0.03), non-white race, higher initial body mass index, severe hypertension, diabetes mellitus, non-independent functional status, and previous foregut/bariatric surgery (all P < 0.001). These factors remained significant upon nominal logistic regression analysis (n = 100,791, P < 0.001, r= 0.008, AUROC = 0.572). Upon ANN analysis, the training set (80% of patients) was more accurate than logistic regression (n = 80,633, r= 0.011, AUROC = 0.581), and it was confirmed by the validation set (n = 20,158, r= 0.012, AUROC = 0.585).

CONCLUSIONS

This study identifies a panel of simple and easily obtainable preoperative patient factors that may portend increased morbidity after LSG. Using an ANN model, prediction of these events can be optimized relative to standard logistic regression modeling.

摘要

背景

多种患者因素可能会增加腹腔镜垂直袖状胃切除术(LVSG)后 30 天发病率和死亡率的风险。评估短期发病率对减重外科医生和患者都很有用。人工神经网络(ANN)是一种使用模式识别来预测结果的计算算法,与传统的多元回归相比,提供了一种更准确和动态的模型。本研究使用综合国家数据库,旨在使用 ANN 来优化预测 LVSG 后 30 天再入院、再次手术、再干预或死亡的复合终点。

方法

从 2016 年代谢和减重外科认证和质量改进计划国家数据库中考虑了 101721 例 LVSG 患者的队列进行分析。选择了预先确定的简单、相关且易于获得的患者因素,并评估了这些因素与 30 天终点的关联。在双变量和多变量名义逻辑回归分析中具有显著关联的因素被纳入具有三个节点的反向传播 ANN 中,每个节点的训练值均为 0.333,并进行 K 折内部验证。使用接收者操作特征曲线下的面积(AUROC)比较逻辑回归和 ANN 模型。

结果

在双变量分析中,与 30 天并发症相关的因素包括年龄较大(P=0.03)、非白人种族、较高的初始体重指数、严重高血压、糖尿病、非独立功能状态和先前的前肠/减重手术(均 P<0.001)。在名义逻辑回归分析中,这些因素仍然具有统计学意义(n=100791,P<0.001,r=0.008,AUROC=0.572)。在 ANN 分析中,训练集(80%的患者)比逻辑回归更准确(n=80633,r=0.011,AUROC=0.581),验证集(n=20158,r=0.012,AUROC=0.585)也得到了证实。

结论

本研究确定了一组简单且易于获得的术前患者因素,这些因素可能预示着 LSG 后发病率增加。使用 ANN 模型,与标准逻辑回归模型相比,可以优化对这些事件的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验