Suppr超能文献

使用人工神经网络预测十二指肠转位术后30天的发病率和死亡率。

Prediction of thirty-day morbidity and mortality after duodenal switch using an artificial neural network.

作者信息

Wise Eric, Leslie Daniel, Amateau Stuart, Hocking Kyle, Scott Adam, Dutta Nirjhar, Ikramuddin Sayeed

机构信息

Department of Surgery, University of Minnesota, 420 East Delaware St, Mayo Mail Code 195, Minneapolis, MN, 55455, USA.

Department of Medicine, University of Minnesota, Minneapolis, MN, USA.

出版信息

Surg Endosc. 2023 Feb;37(2):1440-1448. doi: 10.1007/s00464-022-09378-5. Epub 2022 Jun 28.

Abstract

BACKGROUND

Understanding factors that increase risk of both mortality and specific measures of morbidity after duodenal switch (DS) is important in deciding to offer this weight loss operation. Artificial neural networks (ANN) are computational deep learning approaches that model complex interactions among input factors to optimally predict an outcome. Here, a comprehensive national database is examined for patient factors associated with poor outcomes, while comparing the performance of multivariate logistic regression and ANN models in predicting these outcomes.

METHODS

2907 DS patients from the 2019 Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database were assessed for patient factors associated with the previously validated composite endpoint of 30-day postoperative reintervention, reoperation, readmission, or mortality using bivariate analysis. Variables associated (P ≤ 0.05) with the endpoint were imputed in a multivariate logistic regression model and a three-node ANN with 20% holdback for validation. Goodness-of-fit was assessed using area under receiver operating curves (AUROC).

RESULTS

There were 229 DS patients with the composite endpoint (7.9%), and 12 mortalities (0.4%). Associated patient factors on bivariate analysis included advanced age, non-white race, cardiac history, hypertension requiring 3 + medications (HTN), previous foregut/obesity surgery, obstructive sleep apnea (OSA), and higher creatinine (P ≤ 0.05). Upon multivariate analysis, independently associated factors were non-white race (odds ratio 1.40; P = 0.075), HTN (1.55; P = 0.038), previous foregut/bariatric surgery (1.43; P = 0.041), and OSA (1.46; P = 0.018). The nominal logistic regression multivariate analysis (n = 2330; R = 0.02, P < 0.001) and ANN (R = 0.06; n = 1863 [training set], n = 467 [validation]) models generated AUROCs of 0.619, 0.656 (training set) and 0.685 (validation set), respectively.

CONCLUSION

Readily obtainable patient factors were identified that confer increased risk of the 30-day composite endpoint after DS. Moreover, use of an ANN to model these factors may optimize prediction of this outcome. This information provides useful guidance to bariatricians and surgical candidates alike.

摘要

背景

了解十二指肠转位术(DS)后增加死亡风险和特定发病指标的因素,对于决定是否进行这种减肥手术至关重要。人工神经网络(ANN)是一种计算深度学习方法,可对输入因素之间的复杂相互作用进行建模,以最佳地预测结果。在此,我们研究了一个全面的国家数据库中与不良结局相关的患者因素,同时比较了多变量逻辑回归和ANN模型在预测这些结局方面的性能。

方法

对2019年代谢和减重手术认证与质量改进计划数据库中的2907例DS患者进行评估,通过双变量分析确定与先前验证的术后30天再次干预、再次手术、再次入院或死亡的复合终点相关的患者因素。将与终点相关(P≤0.05)的变量纳入多变量逻辑回归模型和一个三节点ANN模型,其中20%的数据用于验证。使用受试者工作特征曲线下面积(AUROC)评估拟合优度。

结果

有229例DS患者出现复合终点(7.9%),12例死亡(0.4%)。双变量分析中相关的患者因素包括高龄、非白人种族、心脏病史、需要3种以上药物治疗的高血压(HTN)、先前的前肠/肥胖手术、阻塞性睡眠呼吸暂停(OSA)和较高的肌酐水平(P≤0.05)。多变量分析显示,独立相关因素为非白人种族(比值比1.40;P=0.075)、HTN(1.55;P=0.038)、先前的前肠/减重手术(1.43;P=0.041)和OSA(1.46;P=0.018)。名义逻辑回归多变量分析(n=2330;R=0.02,P<0.001)和ANN模型(R=0.06;n=1863[训练集],n=467[验证集])生成的AUROC分别为0.619、0.656(训练集)和0.685(验证集)。

结论

确定了易于获得的患者因素,这些因素会增加DS术后30天复合终点的风险。此外,使用ANN对这些因素进行建模可能会优化对该结局的预测。这些信息为减重外科医生和手术候选人提供了有用的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验