Suppr超能文献

对荟萃分析中诊断测试准确性如何随阈值变化进行量化。

Quantifying how diagnostic test accuracy depends on threshold in a meta-analysis.

机构信息

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

Department of Biostatistics, Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island.

出版信息

Stat Med. 2019 Oct 30;38(24):4789-4803. doi: 10.1002/sim.8301. Epub 2019 Sep 30.

Abstract

Tests for disease often produce a continuous measure, such as the concentration of some biomarker in a blood sample. In clinical practice, a threshold C is selected such that results, say, greater than C are declared positive and those less than C negative. Measures of test accuracy such as sensitivity and specificity depend crucially on C, and the optimal value of this threshold is usually a key question for clinical practice. Standard methods for meta-analysis of test accuracy (i) do not provide summary estimates of accuracy at each threshold, precluding selection of the optimal threshold, and furthermore, (ii) do not make use of all available data. We describe a multinomial meta-analysis model that can take any number of pairs of sensitivity and specificity from each study and explicitly quantifies how accuracy depends on C. Our model assumes that some prespecified or Box-Cox transformation of test results in the diseased and disease-free populations has a logistic distribution. The Box-Cox transformation parameter can be estimated from the data, allowing for a flexible range of underlying distributions. We parameterise in terms of the means and scale parameters of the two logistic distributions. In addition to credible intervals for the pooled sensitivity and specificity across all thresholds, we produce prediction intervals, allowing for between-study heterogeneity in all parameters. We demonstrate the model using two case study meta-analyses, examining the accuracy of tests for acute heart failure and preeclampsia. We show how the model can be extended to explore reasons for heterogeneity using study-level covariates.

摘要

测试疾病的方法通常会产生一个连续的指标,例如血液样本中某种生物标志物的浓度。在临床实践中,会选择一个阈值 C,使得结果大于 C 的被宣布为阳性,小于 C 的被宣布为阴性。测试准确性的度量标准,如敏感性和特异性,很大程度上取决于 C,而这个阈值的最佳值通常是临床实践的一个关键问题。用于测试准确性的荟萃分析的标准方法(i)没有提供每个阈值的准确性的汇总估计,从而无法选择最佳阈值,此外,(ii)没有利用所有可用的数据。我们描述了一种多变量荟萃分析模型,该模型可以从每个研究中获取任意数量的敏感性和特异性对,并明确地量化准确性如何取决于 C。我们的模型假设在患病和非患病人群中,测试结果的某个预定或 Box-Cox 转换具有逻辑分布。Box-Cox 转换参数可以从数据中估计出来,从而允许有灵活的潜在分布范围。我们用两个逻辑分布的均值和尺度参数来参数化。除了在所有阈值上汇总敏感性和特异性的置信区间外,我们还生成预测区间,允许在所有参数上存在研究间的异质性。我们使用两个案例研究荟萃分析来演示该模型,检查了用于急性心力衰竭和先兆子痫的测试的准确性。我们展示了如何使用研究水平的协变量来扩展该模型,以探索异质性的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb11/6856843/3c7cab493ad7/SIM-38-4789-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验