Dunn-Meynell Ambrose A, Dowling Peter, Marchese Michelle, Rodriguez Esther, Blumberg Benjamin, Choi Yun-Beom, Gaindh Deeya, Lu Wei
Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States.
Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.
Front Aging Neurosci. 2019 Sep 12;11:252. doi: 10.3389/fnagi.2019.00252. eCollection 2019.
Many studies of tauopathy use transgenic mice that overexpress the P301S mutant form of tau. Neuronal damage in these mice is associated with astrogliosis and induction of glial fibrillary acidic protein (GFAP) expression. GFAP-luc transgenic mice express firefly luciferase under the GFAP promoter, allowing bioluminescence to be measured non-invasively as a surrogate biomarker for astrogliosis. We bred double transgenic mice possessing both P301S and GFAP-luc cassettes and compared them to control mice bearing only the GFAP-luc transgene. We used serial bioluminescent images to define the onset and the time course of astrogliosis in these mice and this was correlated with the development of clinical deficit. Mice containing both GFAP-luc and P301S transgenes showed increased luminescence indicative of astroglial activation in the brain and spinal cord. Starting at 5 months old, the onset of clinical deterioration in these mice corresponded closely to the initial rise in the luminescent signal. Post mortem analysis showed the elevated luminescence was correlated with hyperphosphorylated tau deposition in the hippocampus of double transgenic mice. We used this method to determine the therapeutic effect of JM4 peptide [a small peptide immunomodulatory agent derived from human erythropoietin (EPO)] on double transgenic mice. JM4 treatment significantly decreased the intensity of luminescence, neurological deficit and hyperphosphorylated tau in mice with both the P301S and GFAP-luc transgenes. These findings indicate that bioluminescence imaging (BLI) is a powerful tool for quantifying GFAP expression in living P301S mice and can be used as a noninvasive biomarker of tau-induced neurodegeneration in preclinical therapeutic trials.
许多关于tau蛋白病的研究使用过度表达tau蛋白P301S突变形式的转基因小鼠。这些小鼠的神经元损伤与星形胶质细胞增生以及胶质纤维酸性蛋白(GFAP)表达的诱导有关。GFAP - 荧光素酶转基因小鼠在GFAP启动子的控制下表达萤火虫荧光素酶,使得生物发光能够作为星形胶质细胞增生的替代生物标志物进行非侵入性测量。我们培育了同时拥有P301S和GFAP - 荧光素酶基因盒的双转基因小鼠,并将它们与仅携带GFAP - 荧光素酶转基因的对照小鼠进行比较。我们使用连续的生物发光图像来确定这些小鼠中星形胶质细胞增生的起始和时间进程,并将其与临床缺陷的发展相关联。同时含有GFAP - 荧光素酶和P301S转基因的小鼠显示出发光增加,表明脑和脊髓中的星形胶质细胞被激活。从5个月大开始,这些小鼠临床恶化的起始与发光信号的最初升高密切相关。死后分析表明,双转基因小鼠海马中发光升高与tau蛋白过度磷酸化沉积相关。我们使用这种方法来确定JM4肽[一种源自人促红细胞生成素(EPO)的小肽免疫调节剂]对双转基因小鼠的治疗效果。JM4治疗显著降低了同时携带P301S和GFAP - 荧光素酶转基因小鼠的发光强度、神经功能缺陷和tau蛋白过度磷酸化。这些发现表明,生物发光成像(BLI)是一种用于定量活体P301S小鼠中GFAP表达的强大工具,并且可以在临床前治疗试验中用作tau蛋白诱导的神经退行性变的非侵入性生物标志物。