Suppr超能文献

迈向基因组后数据分析自动化算法的研究:基于人工神经网络的启动子预测。

Toward Algorithms for Automation of Postgenomic Data Analyses: Promoter Prediction with Artificial Neural Network.

机构信息

Farroupilha Campus, Rio Grande do Sul Federal Institute of Education, Science and Technology (IFRS), Farroupilha, Brazil.

Biotechnology Institute, Caxias do Sul University (UCS), Caxias do Sul, Brazil.

出版信息

OMICS. 2020 May;24(5):300-309. doi: 10.1089/omi.2019.0041. Epub 2019 Oct 1.

Abstract

In the present postgenomic era, the capacity to generate big data has far exceeded the capacity to analyze, contextualize, and make sense of the data in clinical, biological, and ecological applications. There is a great unmet need for automation and algorithms to aid in analyses of big data, in biology in particular. In this context, it is noteworthy that computational methods used to analyze the regulation of bacterial gene expression have in the past focused mainly on promoters due to the large amount of data available. The challenge and prospects of automation in prediction and recognition of bacteria sequences as promoters have not been properly addressed due to the promoter size and degenerate pattern. We report here an original neural network approach for recognition and prediction of promoters. The artificial neural network used as input 767 promoter sequences, while also aiming at identifying the architecture, provides the most optimal prediction. Two multilayer perceptron neural network architectures offered the highest accuracy: one with five, and another with seven neurons in the hidden layer. Each architecture achieved an accuracy of 98.57% and 97.69%, respectively. The results collectively indicate the promise of the application of neural network approaches to the promoter recognition problem, while also suggesting the broader potential of algorithms for automation of data analyses in the postgenomic era.

摘要

在后基因组时代,产生大数据的能力远远超过了分析、上下文理解和赋予临床、生物和生态应用数据意义的能力。特别是在生物学中,人们非常需要自动化和算法来帮助分析大数据。在这种情况下,值得注意的是,过去用于分析细菌基因表达调控的计算方法主要集中在启动子上,因为有大量的数据可用。由于启动子的大小和简并模式,自动化预测和识别细菌序列作为启动子的挑战和前景尚未得到妥善解决。我们在这里报告了一种用于识别和预测启动子的原始神经网络方法。所使用的人工神经网络作为输入 767 个启动子序列,同时也旨在确定架构,提供最优化的预测。两个多层感知器神经网络架构提供了最高的准确性:一个具有五个神经元,另一个具有七个神经元在隐藏层中。每个架构的准确性分别达到 98.57%和 97.69%。这些结果共同表明了神经网络方法在启动子识别问题中的应用前景,同时也表明了在后基因组时代,算法在数据分析自动化方面的更广泛潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验