Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France.
Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085, Strasbourg Cedex, France.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18817-18822. doi: 10.1002/anie.201909424. Epub 2019 Nov 6.
Inspired by biology, one current goal in supramolecular chemistry is to control the emergence of new functionalities arising from the self-assembly of molecules. In particular, some peptides can self-assemble and generate exceptionally catalytically active fibrous networks able to underpin hydrogels. Unfortunately, the mechanical fragility of these materials is incompatible with process developments, relaying this exciting field to academic curiosity. Here, we show that this drawback can be circumvented by enzyme-assisted self-assembly of peptides initiated at the walls of a supporting porous material. We applied this strategy to grow an esterase-like catalytically active supramolecular hydrogel (CASH) in an open-cell polymer foam, filling the whole interior space. Our supported CASH material is highly efficient towards inactivated esters and enables the kinetic resolution of racemates. This hybrid material is robust enough to be used in continuous flow reactors, and is reusable and stable over months.
受生物学启发,超分子化学的一个当前目标是控制分子自组装产生的新功能的出现。特别是,一些肽可以自组装并产生具有异常催化活性的纤维网络,能够支撑水凝胶。不幸的是,这些材料的机械脆性与工艺开发不兼容,这将这一令人兴奋的领域留给了学术好奇心。在这里,我们表明,通过在多孔支撑材料的壁上启动酶辅助的肽自组装,可以避免这一缺点。我们将该策略应用于在开孔聚合物泡沫中生长酯酶样催化活性的超分子水凝胶 (CASH),填充整个内部空间。我们的负载型 CASH 材料对失活酯具有很高的效率,并能够对外消旋物进行动力学拆分。这种混合材料足够坚固,可以在连续流动反应器中使用,并且可以重复使用且数月稳定。