Department of Biology New York University , New York , New York 10003 , United States.
ACS Chem Biol. 2019 Dec 20;14(12):2564-2575. doi: 10.1021/acschembio.9b00365. Epub 2019 Oct 21.
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that block the access of proteins to DNA and interfere with gene expression, replication, and repair. We previously described DPC formation at the N7-guanine position of DNA in human cells treated with antitumor nitrogen mustards and platinum compounds and have shown that DPCs can form endogenously at DNA epigenetic mark 5-formyl-dC. However, insufficient information is available about the effects of these structurally distinct DPCs on transcription. In the present work, we employ a combination of assays, mass spectrometry, and molecular dynamics simulations to examine the ability of phage T7 RNA polymerase to bypass DPCs conjugated to the C7 position of 7-deaza-dG and the C5 position of dC. These model adducts represent endogenous DPCs induced by exposure to antitumor drugs and formed at epigenetics DNA marks, respectively. Our results reveal that DPCs containing full-length proteins significantly inhibit transcription by T7 RNA polymerase, while short DNA-peptide cross-links (DpCs) are bypassed. DpCs conjugated to the C7 position of 7-deaza-dG are transcribed with high fidelity, while the same polypeptides attached to the C5 position of dC induce transcription errors. Molecular dynamics simulations of DpCs conjugated either to the C5 atom of dC or the C7 position of 7-deaza-dG on the template strand in T7 RNA polymerase explain how the conjugated peptide can be accommodated in the narrow major groove of the DNA-RNA hybrid and how the modified dC can form a stable mismatch with the incoming ATP in the polymerase active site, allowing for transcriptional mutagenesis.
DNA-蛋白质交联物(DPCs)是异常庞大的 DNA 加合物,它们阻碍蛋白质与 DNA 的结合,干扰基因表达、复制和修复。我们之前描述了在抗肿瘤氮芥和铂化合物处理的人细胞中 DNA 的 N7-鸟嘌呤位置形成的 DPCs,并表明 DPCs 可以在 DNA 表观遗传标记 5-甲酰基-dC 处内源性形成。然而,关于这些结构不同的 DPCs 对转录的影响,信息还不够充分。在本工作中,我们采用组合方法,包括测定法、质谱法和分子动力学模拟,研究噬菌体 T7 RNA 聚合酶绕过与 7-脱氮-dG 的 C7 位和 dC 的 C5 位结合的 DPCs 的能力。这些模型加合物分别代表抗肿瘤药物暴露诱导的内源性 DPCs 和形成于表观遗传 DNA 标记的 DPCs。我们的结果表明,含有全长蛋白质的 DPCs 显著抑制 T7 RNA 聚合酶的转录,而短的 DNA-肽交联物(DpCs)则被绕过。与 7-脱氮-dG 的 C7 位结合的 DpCs 具有高保真转录,而相同的多肽与 dC 的 C5 位结合会引起转录错误。DpCs 与 dC 的 C5 原子或 7-脱氮-dG 的 C7 位结合在 T7 RNA 聚合酶模板链上的分子动力学模拟解释了结合的多肽如何适应 DNA-RNA 杂交体的狭窄主沟,以及修饰的 dC 如何与聚合酶活性位点中的进入的 ATP 形成稳定的错配,从而允许转录突变。