Suppr超能文献

T7 RNA 聚合酶对 DNA-蛋白质和 DNA-肽缀合物的转录旁路。

Transcriptional Bypass of DNA-Protein and DNA-Peptide Conjugates by T7 RNA Polymerase.

机构信息

Department of Biology New York University , New York , New York 10003 , United States.

出版信息

ACS Chem Biol. 2019 Dec 20;14(12):2564-2575. doi: 10.1021/acschembio.9b00365. Epub 2019 Oct 21.

Abstract

DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that block the access of proteins to DNA and interfere with gene expression, replication, and repair. We previously described DPC formation at the N7-guanine position of DNA in human cells treated with antitumor nitrogen mustards and platinum compounds and have shown that DPCs can form endogenously at DNA epigenetic mark 5-formyl-dC. However, insufficient information is available about the effects of these structurally distinct DPCs on transcription. In the present work, we employ a combination of assays, mass spectrometry, and molecular dynamics simulations to examine the ability of phage T7 RNA polymerase to bypass DPCs conjugated to the C7 position of 7-deaza-dG and the C5 position of dC. These model adducts represent endogenous DPCs induced by exposure to antitumor drugs and formed at epigenetics DNA marks, respectively. Our results reveal that DPCs containing full-length proteins significantly inhibit transcription by T7 RNA polymerase, while short DNA-peptide cross-links (DpCs) are bypassed. DpCs conjugated to the C7 position of 7-deaza-dG are transcribed with high fidelity, while the same polypeptides attached to the C5 position of dC induce transcription errors. Molecular dynamics simulations of DpCs conjugated either to the C5 atom of dC or the C7 position of 7-deaza-dG on the template strand in T7 RNA polymerase explain how the conjugated peptide can be accommodated in the narrow major groove of the DNA-RNA hybrid and how the modified dC can form a stable mismatch with the incoming ATP in the polymerase active site, allowing for transcriptional mutagenesis.

摘要

DNA-蛋白质交联物(DPCs)是异常庞大的 DNA 加合物,它们阻碍蛋白质与 DNA 的结合,干扰基因表达、复制和修复。我们之前描述了在抗肿瘤氮芥和铂化合物处理的人细胞中 DNA 的 N7-鸟嘌呤位置形成的 DPCs,并表明 DPCs 可以在 DNA 表观遗传标记 5-甲酰基-dC 处内源性形成。然而,关于这些结构不同的 DPCs 对转录的影响,信息还不够充分。在本工作中,我们采用组合方法,包括测定法、质谱法和分子动力学模拟,研究噬菌体 T7 RNA 聚合酶绕过与 7-脱氮-dG 的 C7 位和 dC 的 C5 位结合的 DPCs 的能力。这些模型加合物分别代表抗肿瘤药物暴露诱导的内源性 DPCs 和形成于表观遗传 DNA 标记的 DPCs。我们的结果表明,含有全长蛋白质的 DPCs 显著抑制 T7 RNA 聚合酶的转录,而短的 DNA-肽交联物(DpCs)则被绕过。与 7-脱氮-dG 的 C7 位结合的 DpCs 具有高保真转录,而相同的多肽与 dC 的 C5 位结合会引起转录错误。DpCs 与 dC 的 C5 原子或 7-脱氮-dG 的 C7 位结合在 T7 RNA 聚合酶模板链上的分子动力学模拟解释了结合的多肽如何适应 DNA-RNA 杂交体的狭窄主沟,以及修饰的 dC 如何与聚合酶活性位点中的进入的 ATP 形成稳定的错配,从而允许转录突变。

相似文献

1
Transcriptional Bypass of DNA-Protein and DNA-Peptide Conjugates by T7 RNA Polymerase.
ACS Chem Biol. 2019 Dec 20;14(12):2564-2575. doi: 10.1021/acschembio.9b00365. Epub 2019 Oct 21.
2
Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases.
J Biol Chem. 2016 Nov 4;291(45):23589-23603. doi: 10.1074/jbc.M116.745257. Epub 2016 Sep 12.
3
T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription.
J Biol Chem. 2012 Feb 24;287(9):6562-72. doi: 10.1074/jbc.M111.318410. Epub 2012 Jan 10.
4
Translesion Synthesis Past 5-Formylcytosine-Mediated DNA-Peptide Cross-Links by hPolη Is Dependent on the Local DNA Sequence.
Biochemistry. 2021 Jun 15;60(23):1797-1807. doi: 10.1021/acs.biochem.1c00130. Epub 2021 Jun 3.
5
Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine.
J Biol Chem. 2015 Jan 9;290(2):775-87. doi: 10.1074/jbc.M114.613638. Epub 2014 Nov 12.
6
Synthesis and polymerase bypass studies of DNA-peptide and DNA-protein conjugates.
Methods Enzymol. 2021;661:363-405. doi: 10.1016/bs.mie.2021.09.005. Epub 2021 Oct 26.
7
DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.
Acc Chem Res. 2015 Jun 16;48(6):1631-44. doi: 10.1021/acs.accounts.5b00056. Epub 2015 Jun 2.
8
Mass Spectrometry Based Proteomics Study of Cisplatin-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells.
Chem Res Toxicol. 2017 Apr 17;30(4):980-995. doi: 10.1021/acs.chemrestox.6b00389. Epub 2017 Mar 29.
10
Mutagenicity of a Model DNA-Peptide Cross-Link in Human Cells: Roles of Translesion Synthesis DNA Polymerases.
Chem Res Toxicol. 2017 Feb 20;30(2):669-677. doi: 10.1021/acs.chemrestox.6b00397. Epub 2016 Dec 21.

引用本文的文献

2
DNA-Protein Cross-Links Derived from Abasic DNA Lesions: Recent Progress and Future Directions.
Chem Res Toxicol. 2025 Jun 16;38(6):997-1005. doi: 10.1021/acs.chemrestox.5c00125. Epub 2025 May 19.
3
Light-Driven Installation of Aminooxyhomolysine on Histones and Its Application for Synthesizing Stable and Site-Specific 3'-DNA-Histone Cross-Links.
Bioconjug Chem. 2024 Dec 18;35(12):1883-1887. doi: 10.1021/acs.bioconjchem.4c00453. Epub 2024 Nov 15.
4
Endogenous Cellular Metabolite Methylglyoxal Induces DNA-Protein Cross-Links in Living Cells.
ACS Chem Biol. 2024 Jun 21;19(6):1291-1302. doi: 10.1021/acschembio.4c00100. Epub 2024 May 16.
5
Transcription-coupled DNA-protein crosslink repair by CSB and CRL4-mediated degradation.
Nat Cell Biol. 2024 May;26(5):770-783. doi: 10.1038/s41556-024-01394-y. Epub 2024 Apr 10.
6
Abasic site-peptide cross-links are blocking lesions repaired by AP endonucleases.
Nucleic Acids Res. 2023 Jul 7;51(12):6321-6336. doi: 10.1093/nar/gkad423.
7
Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA.
Nucleic Acids Res. 2023 Jul 21;51(13):6509-6527. doi: 10.1093/nar/gkad150.
8
Targeting DNA-Protein Crosslinks Post-Translational Modifications.
Front Mol Biosci. 2022 Jul 4;9:944775. doi: 10.3389/fmolb.2022.944775. eCollection 2022.
9
Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease.
Front Mol Biosci. 2022 Jun 15;9:916697. doi: 10.3389/fmolb.2022.916697. eCollection 2022.
10
Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links.
Genes (Basel). 2022 Jan 18;13(2):166. doi: 10.3390/genes13020166.

本文引用的文献

1
Error-prone replication of a 5-formylcytosine-mediated DNA-peptide cross-link in human cells.
J Biol Chem. 2019 Jul 5;294(27):10619-10627. doi: 10.1074/jbc.RA119.008879. Epub 2019 May 28.
2
5-Formylcytosine mediated DNA-protein cross-links block DNA replication and induce mutations in human cells.
Nucleic Acids Res. 2018 Jul 27;46(13):6455-6469. doi: 10.1093/nar/gky444.
4
Reversible DNA-Protein Cross-Linking at Epigenetic DNA Marks.
Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14130-14134. doi: 10.1002/anie.201708286. Epub 2017 Oct 6.
5
5-Formylcytosine Yields DNA-Protein Cross-Links in Nucleosome Core Particles.
J Am Chem Soc. 2017 Aug 9;139(31):10617-10620. doi: 10.1021/jacs.7b05495. Epub 2017 Jul 25.
6
DNA-Protein Crosslink Proteolysis Repair.
Trends Biochem Sci. 2017 Jun;42(6):483-495. doi: 10.1016/j.tibs.2017.03.005. Epub 2017 Apr 14.
7
Mutagenicity of a Model DNA-Peptide Cross-Link in Human Cells: Roles of Translesion Synthesis DNA Polymerases.
Chem Res Toxicol. 2017 Feb 20;30(2):669-677. doi: 10.1021/acs.chemrestox.6b00397. Epub 2016 Dec 21.
8
Metalloprotease SPRTN/DVC1 Orchestrates Replication-Coupled DNA-Protein Crosslink Repair.
Mol Cell. 2016 Nov 17;64(4):704-719. doi: 10.1016/j.molcel.2016.09.032. Epub 2016 Oct 27.
9
Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases.
J Biol Chem. 2016 Nov 4;291(45):23589-23603. doi: 10.1074/jbc.M116.745257. Epub 2016 Sep 12.
10
Covalent DNA-Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells.
Chem Res Toxicol. 2016 Feb 15;29(2):190-202. doi: 10.1021/acs.chemrestox.5b00430. Epub 2016 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验