Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1, Tokiwa-dai, Ube 755-8611, Japan. Department of Pharmacy and Bioengineering, Biomedical Engineering, Chongqing University of Technology, No.69, Hongguang Avenue, Chongqing 400054, People's Republic of China.
Phys Med Biol. 2019 Oct 31;64(21):21NT02. doi: 10.1088/1361-6560/ab49ea.
The present note addresses the development of a lung tumor position predictor to be used in dynamic tumor tracking radiotherapy, abbreviated as DTT-RT. As there exists 50-500 ms positioning lag in the control of the multi-leaf collimator (MLC) of commercial medical linear accelerators, prediction of future lung tumor position with sufficiently long prediction horizon is inevitable for the successful implementation of DTT-RT. The present article proposes a lung tumor position predictor, which is classified as a nonlinear autoregressive model with exogenous input (NARX). The proposed predictor was trained using seven lung tumor motion trajectories of patients who underwent respiratory gated radiotherapy at Yamaguchi University Hospital. We considered three different prediction horizons, 600 ms, 800 ms and 1 s, which were sufficiently long to compensate for the possible positioning control lag of the MLC. A patient-specific model corresponding to an intended prediction horizon was obtained by training it using the selected tumor motion trajectory with the specified horizon. Accordingly, we obtained three NARX predictors for a single patient. We calculated two performance metrics: the RMS prediction errors and the rate of coverage of the entire tumor trajectory defined by the number of samples of the measured tumor position which was inside the 4 mm cube centered at the corresponding predicted tumor position. The latter quantifies the feasibility of the predictors to generate future gating cubes in the implementation of DTT-RT. The [Formula: see text] (mean [Formula: see text] standard deviation) values of the rates of 600 ms, 800 ms and 1 s prediction horizon calculated using the proposed NARX predictors were [Formula: see text]%, [Formula: see text]% and [Formula: see text]%, respectively.
本说明介绍了一种用于动态肿瘤跟踪放射治疗(DTT-RT)的肺肿瘤位置预测器的开发,简称 DTT-RT。由于商业医用直线加速器的多叶准直器(MLC)的控制存在 50-500ms 的定位滞后,因此对于 DTT-RT 的成功实施,必须具有足够长的预测期来预测未来的肺肿瘤位置。本文提出了一种肺肿瘤位置预测器,该预测器归类为具有外部输入的非线性自回归模型(NARX)。使用在山口大学医院接受呼吸门控放射治疗的患者的七个肺肿瘤运动轨迹对所提出的预测器进行了训练。我们考虑了三个不同的预测期,600ms、800ms 和 1s,这足以补偿 MLC 可能的定位控制滞后。通过使用具有指定期的选定肿瘤运动轨迹对其进行训练,可以获得与预期预测期相对应的患者特异性模型。因此,我们为单个患者获得了三个 NARX 预测器。我们计算了两个性能指标:均方根预测误差和通过测量肿瘤位置的样本数覆盖整个肿瘤轨迹的比例,该比例以位于相应预测肿瘤位置中心的 4mm 立方体内的测量肿瘤位置样本数来定义。后者量化了预测器在实施 DTT-RT 时生成未来门控立方的可行性。使用所提出的 NARX 预测器计算的 600ms、800ms 和 1s 预测期的[Formula: see text](平均值[Formula: see text]标准差)值分别为[Formula: see text]%、[Formula: see text]%和[Formula: see text]%。