Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France.
SPEC/SPHYNX, DSM/IRAMIS CEA Saclay, Bat. 772, F-91191 Gif-sur-Yvette, France.
Phys Rev E. 2019 Aug;100(2-1):023001. doi: 10.1103/PhysRevE.100.023001.
Crack growth in heterogeneous materials sometimes exhibits crackling dynamics, made of successive impulselike events with specific scale-invariant time and size organization reminiscent of earthquakes. Here, we examine this dynamics in a model which identifies the crack front with a long-range elastic line driven in a random potential. We demonstrate that, under some circumstances, fracture grows intermittently, via scale-free impulse organized into aftershock sequences obeying the fundamental laws of statistical seismology. We examine the effects of the driving rate and system overall stiffness (unloading factor) onto the scaling exponents and cutoffs associated with the time and size organization. We unravel the specific conditions required to observe a seismiclike organization in the crack propagation problem. Beyond failure problems, implications of these results to other crackling systems are finally discussed.
在多相材料中,裂纹的扩展有时表现出爆裂动力学,由具有特定标度不变时间和大小组织的连续脉冲事件组成,使人联想到地震。在这里,我们在一个模型中研究了这种动力学,该模型将裂纹前缘标识为在随机势中驱动的远程弹性线。我们证明,在某些情况下,通过具有标度不变性的脉冲间歇性地进行断裂,这些脉冲组织成余震序列,这些序列服从统计地震学的基本定律。我们研究了驱动速度和系统整体刚度(卸载因子)对与时间和大小组织相关的标度指数和截止值的影响。我们揭示了在裂纹扩展问题中观察到类似地震组织所需的具体条件。除了失效问题之外,这些结果对其他爆裂系统的影响也进行了讨论。