Barés Jonathan, Bonamy Daniel
Laboratoire de Mécanique et Génie Civil, UMR 5508 CNRS-University Montpellier, 34095 Montpellier, France.
Service de Physique de l'État Condensée, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
Phys Rev E. 2021 May;103(5-1):053001. doi: 10.1103/PhysRevE.103.053001.
We examine the effect of small, spatially localized excitations applied periodically in different manners, on the crackling dynamics of a brittle crack driven slowly in a heterogeneous solid. When properly adjusted, these excitations are observed to radically modify avalanche statistics and considerably limit the magnitude of the largest events. Surprisingly, this does not require information on the front loading state at the time of excitation; applying it either at a random location or at the most loaded point gives the same results. Subsequently, we unravel how the excitation amplitude, spatial extent, and frequency govern the effect. We find that the excitation efficiency is ruled by a single reduced parameter, namely the injected power per unit front length; the suppression of extreme avalanches is maximum at a well-defined optimal value of this control parameter. analysis opens another way to control the largest events in crackling dynamics. Beyond fracture problems, it may be relevant for crackling systems described by models of the same universality class, such as the wetting of heterogeneous substrates or magnetic walls in amorphous magnets.
我们研究了以不同方式周期性施加的小尺度、空间局部激发对在非均匀固体中缓慢驱动的脆性裂纹的噼啪动力学的影响。当进行适当调整时,观察到这些激发会从根本上改变雪崩统计,并显著限制最大事件的规模。令人惊讶的是,这并不需要激发时刻前沿加载状态的信息;在随机位置或加载最严重的点施加激发会得到相同的结果。随后,我们揭示了激发幅度、空间范围和频率是如何控制这种效应的。我们发现激发效率由一个单一的约化参数决定,即单位前沿长度注入的功率;在这个控制参数的一个明确的最佳值处,对极端雪崩的抑制作用最大。该分析为控制噼啪动力学中的最大事件开辟了另一条途径。除了断裂问题外,它可能与由相同普适类模型描述的噼啪系统相关,例如非均匀基底的润湿或非晶磁体中的磁壁。