Suppr超能文献

一维离散聚集-破碎模型。

One-dimensional discrete aggregation-fragmentation model.

机构信息

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.

Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

出版信息

Phys Rev E. 2019 Aug;100(2-1):022145. doi: 10.1103/PhysRevE.100.022145.

Abstract

We study here one-dimensional model of aggregation and fragmentation of clusters of particles obeying the stochastic discrete-time kinetics of the generalized totally asymmetric simple exclusion process (gTASEP) on open chains. The gTASEP is essentially the ordinary TASEP with backward-ordered sequential update (BSU), however, equipped with two hopping probabilities: p and p_{m}. The second modified probability p_{m} models a special kinematic interaction between the particles of a cluster in addition to the simple hard-core exclusion interaction, existing in the ordinary TASEP. We focus on the nonequilibrium stationary properties of the gTASEP in the generic case of attraction between the particles of a cluster. In this case the particles of a cluster have higher chance to stay together than to split, thus producing higher throughput in the system. We explain how the topology of the phase diagram in the case of irreversible aggregation, occurring when the modified probability equals unity, changes sharply to the one, corresponding to the ordinary TASEP with BSU, as soon as the modified probability becomes less than unity and aggregation-fragmentation of clusters appears. We estimate various physical quantities in the system and determine the parameter-dependent injection and ejection critical values by extensive computer simulations. With the aid of random walk theory, supported by the Monte Carlo simulations, the properties of the phase transitions between the three stationary phases are assessed.

摘要

我们在这里研究一维的颗粒团簇聚集和碎裂模型,其服从广义完全非对称简单排斥过程(gTASEP)在开链上的随机离散时间动力学。gTASEP 本质上是带有反向有序顺序更新(BSU)的普通 TASEP,但具有两个跳跃概率:p 和 p_{m}。第二个修改后的概率 p_{m} 除了普通 TASEP 中存在的简单硬芯排斥相互作用之外,还为簇内粒子之间的特殊运动相互作用建模。我们关注的是在簇内粒子之间存在吸引力的一般情况下 gTASEP 的非平衡定态性质。在这种情况下,簇内的粒子比分裂更有可能保持在一起,从而使系统的吞吐量更高。我们解释了当修改后的概率等于 1 时发生不可逆聚集的情况下,相图的拓扑结构如何急剧变化,一旦修改后的概率小于 1 且出现簇的聚集-碎裂时,它就会变为与具有 BSU 的普通 TASEP 对应的拓扑结构。我们通过广泛的计算机模拟来估计系统中的各种物理量,并确定与注入和排出相关的临界值。借助随机游走理论和蒙特卡罗模拟的支持,评估了三个定态相之间的相变特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验