Instituto de Física, Universidade de Brasília, Brazil.
International Center for Condensed Matter Physics, CP 04455, 70919-970 Brasília DF, Brazil.
Phys Rev E. 2019 Aug;100(2-1):020101. doi: 10.1103/PhysRevE.100.020101.
We demonstrate that in the continuous limit the etching mechanism yields the Kardar-Parisi-Zhang (KPZ) equation in a (d+1)-dimensional space. We show that the parameters ν, associated with the surface tension, and λ, associated with the nonlinear term of the KPZ equation, are not phenomenological, but rather they stem from a new probability distribution function. The Galilean invariance is recovered independently of d, and we illustrate this via very precise numerical simulations. We obtain firsthand the coupling parameter as a function of the probabilities. In addition, we strengthen the argument that there is no upper critical limit for the KPZ equation.
我们证明,在连续极限下,刻蚀机制在(d+1)-维空间中产生 Kardar-Parisi-Zhang(KPZ)方程。我们表明,与表面张力相关的参数 ν 和与 KPZ 方程的非线性项相关的参数 λ 不是唯象的,而是源于新的概率分布函数。伽利略不变性独立于 d 恢复,我们通过非常精确的数值模拟来说明这一点。我们直接获得了作为概率函数的耦合参数。此外,我们加强了这样的论点,即 KPZ 方程没有上临界极限。