Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA.
Phys Rev E. 2019 Aug;100(2-1):022707. doi: 10.1103/PhysRevE.100.022707.
We conduct an in-depth analysis of the electroclinic effect in chiral, ferroelectric liquid crystal systems that have a first-order smectic-A^{}-smectic-C^{} (Sm-A^{}-Sm-C^{}) transition, and show that such systems can be either type I or type II. In temperature-field parameter space type-I systems exhibit a macroscopically achiral (in which the Sm-C_{M}^{} helical superstructure is expelled) low-tilt (LT) Sm-C_{U}^{}-high-tilt (HT) Sm-C_{U}^{} critical point, which terminates a LT Sm-C_{U}^{}-HT Sm-^{}C_{U} first-order boundary. Notationally, Sm-C_{M}^{} or Sm-C_{U}^{} denotes the Sm-C^{} phase with or without a modulated superstructure. This boundary extends to an achiral-chiral triple point at which the macroscopically achiral LT Sm-C_{U}^{} and HT Sm-C_{U}^{} phases coexist along with the chiral Sm-C_{M}^{} phase. In type-II systems the critical point, triple point, and first-order boundary are replaced by a Sm-C_{M}^{} region, sandwiched between LT and HT Sm-C_{U}^{} phases, at low and high fields, respectively. Correspondingly, as the field is ramped up, the type-II system will display a reentrant Sm-C_{U}^{}-Sm-C_{M}^{}-Sm-C_{U}^{} phase sequence. Moreover, discontinuity in the tilt of the optical axis at each of the two phase transitions means the type-II system is tristable, in contrast to the bistable nature of the LT Sm-C_{U}^{}-HT Sm-C_{U}^{} transition in type-I systems. Whether the system is type I or type II is determined by the ratio of two length scales, one of which is the zero-field Sm-C^{} helical pitch. The other length scale depends on the size of the discontinuity (and thus the latent heat) at the zero-field first-order Sm-A^{}-Sm-C^{} transition. We note that this type-I vs type-II behavior in this ferroelectric smectic is the Ising universality class analog of type-I vs type-II behavior in XY universality class systems. Lastly, we make a complete mapping of the phase boundaries in all regions of temperature-field-enantiomeric-excess parameter space (not just near the critical point) and show that various interesting features are possible, including a multicritical point, tricritical points, and a doubly reentrant Sm-C_{U}^{}-Sm-C_{M}^{}-Sm-C_{U}^{}-Sm-C_{M}^{*} phase sequence.
我们对具有一级 Sm-A* -Sm-C*(Sm-A* -Sm-C*)相变的手性铁电液晶系统中的电致伸缩效应进行了深入分析,结果表明该系统可能属于 I 型或 II 型。在温度场参数空间中,I 型系统表现出宏观非手性(其中 Sm-CM螺旋超结构被排出)低倾斜(LT)Sm-CU-高倾斜(HT)Sm-CU临界点,该临界点终止 LT Sm-CU-HT Sm-CU 一级边界。符号上,Sm-CM或 Sm-CU表示具有或不具有调制超结构的 Sm-C相。该边界扩展到非手性-手性三相点,在此三相点处,宏观非手性 LT Sm-CU和 HT Sm-CU相与手性 Sm-CM相共存。在 II 型系统中,临界点、三相点和一级边界分别被 Sm-CM区域取代,该区域夹在 LT 和 HT Sm-CU相之间,分别在低场和高场。相应地,随着场的增加,II 型系统将显示出再入 Sm-CU*-Sm-CM-Sm-CU相序列。此外,在两个相变中的每一个相变处,光轴倾斜的不连续性意味着 II 型系统是三稳态的,与 I 型系统中 LT Sm-CU-HT Sm-CU相变的双稳态性质相反。系统是 I 型还是 II 型取决于两个长度尺度的比值,其中一个长度尺度是零场 Sm-C螺旋螺距。另一个长度尺度取决于零场一级 Sm-A -Sm-C相变处不连续性的大小(因此取决于潜热)。我们注意到,这种铁电向列的 I 型与 II 型行为是 XY 均匀类系统中 I 型与 II 型行为的伊辛普遍类模拟。最后,我们对所有温度场-对映体过量参数空间区域(不仅仅是临界点附近)的相边界进行了完整映射,并表明可能存在各种有趣的特征,包括多点、三叉点和双再入 Sm-CU*-Sm-CM-Sm-CU-Sm-CM相序列。