Unité de Recherche de Mécanique et de Modélisation des Systèmes Physiques, Département de Physique, Université de Dschang, BP 69 Dschang, Cameroon.
Department of Physics, Higher Teachers Training College Bambili, University of Bamenda, P.O. Box 39, Bamenda, Cameroon.
Phys Rev E. 2019 Aug;100(2-1):022214. doi: 10.1103/PhysRevE.100.022214.
In this work, the qualitative structures of traveling waves are investigated in a bidimensional inductor-capacitor network with quadratic nonlinear dispersion. Applying the continuum limit approximation, we show that the dynamics of small-amplitude signals in the network can be governed by a (2+1)-dimensional partial differential equation. Using a simple transformation, we reduce the given equation to a nonlinear ordinary differential equation. By means of the phase plane analysis and depending on the wave velocity of the signals that are to propagate in the lattice, we present all phase portraits of the dynamical system. Parametric representations for solitary-wave solutions corresponding to the various phase portrait trajectories under different parameter conditions are derived. The results of our study demonstrate that the nonlinear dispersion in the network leads to a number of interesting solitary-wave profiles, e.g., bright-dark solitons and gray-gray solitons, which have not been observed for the same model when the dispersion is assumed linear. The two-dimensional graphics of all the solutions obtained in this paper are given.
在这项工作中,研究了具有二次非线性色散的二维电感-电容网络中行波的定性结构。应用连续体极限近似,我们表明网络中小振幅信号的动力学可以由一个(2+1)维偏微分方程来描述。通过一个简单的变换,我们将给定的方程简化为一个非线性常微分方程。通过相平面分析,并根据信号在格子中的传播速度,我们给出了动力学系统的所有相图。在不同参数条件下,针对不同相轨线,推导出了对应孤波解的参数表示式。我们的研究结果表明,网络中的非线性色散导致了许多有趣的孤波轮廓,例如亮-暗孤子和灰-灰孤子,而当色散被假设为线性时,对于相同的模型,并没有观察到这些孤波轮廓。本文中得到的所有解的二维图形都给出了。