Suppr超能文献

具有参数效应的分数阶孤立波传播分析及修正的Korteweg-de Vries-Kadomtsev-Petviashvili方程的定性分析

Analysis of fractional solitary wave propagation with parametric effects and qualitative analysis of the modified Korteweg-de Vries-Kadomtsev-Petviashvili equation.

作者信息

Muhammad Jan, Younas Usman, Hussain Ejaz, Ali Qasim, Sediqmal Mirwais, Kedzia Krzysztof, Jan Ahmed Z

机构信息

Department of Mathematics, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.

出版信息

Sci Rep. 2024 Aug 26;14(1):19736. doi: 10.1038/s41598-024-68265-2.

Abstract

This study explores the fractional form of modified Korteweg-de Vries-Kadomtsev-Petviashvili equation. This equation offers the physical description of how waves propagate and explains how nonlinearity and dispersion may lead to complex and fascinating wave phenomena arising in the diversity of fields like optical fibers, fluid dynamics, plasma waves, and shallow water waves. A variety of solutions in different shapes like bright, dark, singular, and combo solitary wave solutions have been extracted. Two recently developed integration tools known as generalized Arnous method and enhanced modified extended tanh-expansion method have been applied to secure the wave structures. Moreover, the physical significance of obtained solutions is meticulously analyzed by presenting a variety of graphs that illustrate the behaviour of the solutions for specific parameter values and a comprehensive investigation into the influence of the nonlinear parameter on the propagation of the solitary wave have been observed. Further, the governing equation is discussed for the qualitative analysis by the assistance of the Galilean transformation. Chaotic behavior is investigated by introducing a perturbed term in the dynamical system and presenting various analyses, including Poincare maps, time series, 2-dimensional 3-dimensional phase portraits. Moreover, chaotic attractor and sensitivity analysis are also observed. Our findings affirm the reliability of the applied techniques and suggest its potential application in future endeavours to uncover diverse and novel soliton solutions for other nonlinear evolution equations encountered in the realms of mathematical physics and engineering.

摘要

本研究探讨了修正的科特韦格 - 德弗里斯 - 卡多姆采夫 - 彼得维谢夫利方程的分式形式。该方程提供了波传播方式的物理描述,并解释了非线性和色散如何导致在光纤、流体动力学、等离子体波和浅水波等不同领域中出现复杂而迷人的波动现象。已经提取了各种不同形状的解,如亮孤子解、暗孤子解、奇异孤子解和组合孤子解。两种最近开发的积分工具,即广义阿尔努斯方法和增强型修正扩展双曲正切 - 展开方法,已被用于确定波结构。此外,通过绘制各种图表来详细分析所得解的物理意义,这些图表展示了特定参数值下解的行为,并观察了非线性参数对孤子波传播影响的全面研究。此外,借助伽利略变换对控制方程进行了定性分析。通过在动力系统中引入一个微扰项并进行各种分析,包括庞加莱映射、时间序列、二维和三维相图,研究了混沌行为。此外,还观察到了混沌吸引子和敏感性分析。我们的研究结果证实了所应用技术的可靠性,并表明其在未来努力中为数学物理和工程领域中遇到的其他非线性演化方程发现多样且新颖的孤子解的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec71/11345427/375cf584be83/41598_2024_68265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验