School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
Chaos. 2019 Sep;29(9):093118. doi: 10.1063/1.5097242.
In exploring oscillator synchronization, a general observation is that as the oscillators become nonidentical, e.g., introducing parameter mismatch among the oscillators, the propensity for synchronization will be deteriorated. Yet in realistic systems, parameter mismatch is unavoidable and even worse in some circumstances, the oscillators might follow different types of dynamics. Considering the significance of synchronization to the functioning of many realistic systems, it is natural to ask the following question: Can synchronization be achieved in networked oscillators of clearly different parameters or dynamics? Here, by the model of networked chaotic oscillators, we are able to demonstrate and argue that, despite the presence of parameter mismatch (or different dynamics), stable synchronization can still be achieved on symmetric complex networks. Specifically, we find that when the oscillators are configured on the network in such a way that the symmetric nodes have similar parameters (or follow the same type of dynamics), cluster synchronization can be generated. The stabilities of the cluster synchronization states are analyzed by the method of symmetry-based stability analysis, with the theoretical predictions in good agreement with the numerical results. Our study sheds light on the interplay between symmetry and cluster synchronization in complex networks and give insights into the functionalities of realistic systems where nonidentical nonlinear oscillators are presented and cluster synchronization is crucial.
在探索振荡器同步时,一个普遍的观察结果是,随着振荡器变得不同,例如,在振荡器之间引入参数失配,同步的倾向将恶化。然而,在现实系统中,参数失配是不可避免的,甚至在某些情况下,振荡器可能会遵循不同类型的动力学。考虑到同步对许多现实系统的功能的重要性,很自然地会问以下问题:在明显不同参数或动力学的网络振荡器中可以实现同步吗?在这里,通过网络混沌振荡器模型,我们能够证明并论证,尽管存在参数失配(或不同的动力学),但在对称复杂网络上仍然可以实现稳定的同步。具体来说,我们发现,当振荡器以这样的方式在网络上配置,即对称节点具有相似的参数(或遵循相同类型的动力学)时,可以产生簇同步。利用基于对称的稳定性分析方法对簇同步状态的稳定性进行了分析,理论预测与数值结果吻合较好。我们的研究揭示了对称和复杂网络中的簇同步之间的相互作用,并为存在非同质非线性振荡器且簇同步至关重要的现实系统的功能提供了深入的见解。