Suppr超能文献

在2016年CASMI竞赛中使用MS-FINDER鉴定19种天然产物。

Using MS-FINDER for identifying 19 natural products in the CASMI 2016 contest.

作者信息

Vaniya Arpana, Samra Stephanie N, Palazoglu Mine, Tsugawa Hiroshi, Fiehn Oliver

机构信息

University of California Davis, West Coast Metabolomics Center, Genome Center, 451 Health Sciences Drive, Davis, CA 95616, USA.

RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.

出版信息

Phytochem Lett. 2017 Sep;21:306-312. doi: 10.1016/j.phytol.2016.12.008. Epub 2016 Dec 9.

Abstract

In its fourth year, the CASMI 2016 contest was organized to evaluate current chemical structure identification strategies for 19 natural products using high-resolution LC-MS and LC-MS/MS challenge datasets using automated methods with or without the combination of other tools. These natural products originate from plants, fungi, marine sponges, algae, or micro-algae. Every compound annotation workflow must start with determination of elemental compositions. Of these 19 challenges, one was excluded by the organizers after submission. For the remaining 18 challenges, three software programs were used. MS-FINDER version 1.62 was able to correctly identify 89% of the molecular formulas using an internal database that comprised of 13 metabolomics repositories with 45,181 formulas. SIRIUS correctly identified 61% compositions using PubChem formulas and Seven Golden Rules correctly identified 83% by using the Dictionary of Natural Products as a targeted database. Next, we performed structural dereplication for which we used the consensus formula from the three software programs. We submitted two solution sets for these challenges. In the first solution set, , we only used the internal MS-FINDER functions for predicting and ranking structures, correctly identifying 53% of the structures as top-hit, 72% within the top-3 structures, and 78% within the top-10 hits. For our second set, , we used both MS-FINDER predictions as well as MS/MS queries against the commercial NIST 14, METLIN, and the public MassBank of North America libraries. Here we correctly identified 78% of the structures as top-hit and 83% within the top-3 hits. Three challenge spectra remained unidentified in either of our submissions within the top-10 hits.

摘要

在其举办的第四年,2016年计算机辅助结构解析质谱识别竞赛(CASMI 2016)旨在评估当前使用高分辨率液相色谱-质谱联用(LC-MS)和液相色谱-串联质谱联用(LC-MS/MS)挑战数据集,通过自动化方法(无论是否结合其他工具)对19种天然产物进行化学结构鉴定的策略。这些天然产物源自植物、真菌、海洋海绵、藻类或微藻。每个化合物注释流程都必须从确定元素组成开始。在这19项挑战中,有一项在提交后被组织者排除。对于其余18项挑战,使用了三个软件程序。MS-FINDER 1.62版本使用一个由13个代谢组学数据库和45181个分子式组成的内部数据库,能够正确识别89%的分子式。SIRIUS使用PubChem分子式正确识别了61%的组成,而七项黄金法则使用《天然产物词典》作为目标数据库正确识别了83%的组成。接下来,我们进行了结构去重复,为此我们使用了这三个软件程序得出的一致分子式。我们针对这些挑战提交了两个解决方案集。在第一个解决方案集中,我们仅使用MS-FINDER的内部功能来预测和排列结构,正确将53%的结构识别为最佳匹配,72%在前三结构内,78%在前十匹配内。对于我们的第二个集,我们既使用了MS-FINDER的预测,也使用了针对商业NIST 14、METLIN和北美公共质谱库的串联质谱查询。在此我们正确将78%的结构识别为最佳匹配,83%在前三匹配内。在我们的任何一个提交结果中,前十匹配内仍有三个挑战光谱未被识别。

相似文献

8
Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.使用MAGMa从质谱数据进行自动化合物注释
Mass Spectrom (Tokyo). 2014;3(Spec Iss 2):S0033. doi: 10.5702/massspectrometry.S0033. Epub 2014 Jul 2.

引用本文的文献

本文引用的文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验