Department of Mechanical Engineering, Koç University, Istanbul, Turkey.
Department of Anesthesiology and Reanimation, Medipol Mega University Hospital, Istanbul, Turkey.
Perfusion. 2020 May;35(4):306-315. doi: 10.1177/0267659119874697. Epub 2019 Oct 3.
Malposition of dual lumen cannula is a frequent and challenging complication in neonates and plays a significant role in shaping the in vitro device hemodynamics. This study aims to analyze the effect of the dual lumen cannula malposition on right-atrial hemodynamics in neonatal patients using an experimentally validated computational fluid dynamics model.
A computer model was developed for clinically approved dual lumen cannula (13Fr Origen Biomedical, Austin, Texas, USA) oriented inside the atrium of a 3-kg neonate with normal venous return. Atrial hemodynamics and dual lumen cannula malposition were systematically simulated for two rotations (antero-atrial and atrio-septal) and four translations (two intravascular movements along inferior vena cava and two dislodged configurations in the atrium). A multi-domain compartmentalized mesh was prepared to allow the site-specific evaluation of important hemodynamic parameters. Transport of each blood stream, blood damage levels, and recirculation times are quantified and compared to dual lumen cannula in proper position.
High recirculation levels (39 ± 4%) in malpositioned cases resulted in poor oxygen saturation where maximum recirculation of up to 42% was observed. Apparently, Origen dual lumen cannula showed poor inferior vena cava blood-capturing efficiency (48 ± 8%) but high superior vena cava blood-capturing efficiency (86 ± 10%). Dual lumen cannula malposition resulted in corresponding changes in residence time (1.7 ± 0.5 seconds through the tricuspid). No significant differences in blood damage were observed among the simulated cases compared to normal orientation. Compared to the correct dual lumen cannula position, both rotational and translational displacements of the dual lumen cannula resulted in significant hemodynamic differences.
Rotational or translational movement of dual lumen cannula is the determining factor for atrial hemodynamics, venous capturing efficiency, blood residence time, and oxygenated blood delivery. Results obtained through computational fluid dynamics methodology can provide valuable foresight in assessing the performance of the dual lumen cannula in patient-specific configurations.
双腔管错位是新生儿中常见且具有挑战性的并发症,对体外设备血液动力学有重要影响。本研究旨在使用经过实验验证的计算流体动力学模型分析双腔管错位对新生儿右心房血液动力学的影响。
针对临床认可的 13Fr Origen 双腔管(美国得克萨斯州奥斯汀市 Origen Biomedical 公司制造),建立了一个位于 3 公斤新生儿心房内的模型,模拟正常静脉回流。系统模拟了双腔管两种旋转(前房-房间隔和房间隔-房室隔)和四种平移(下腔静脉内的两种血管内运动和心房内的两种移位配置)。准备了一个多区域分区网格,以允许对重要血流动力学参数进行特定部位的评估。定量比较了各血流的输送、血液损伤水平和再循环时间,并与正确位置的双腔管进行比较。
错位病例的高再循环水平(39±4%)导致氧饱和度差,最大再循环率高达 42%。显然,Origen 双腔管下腔静脉血液捕获效率低(48±8%),但上腔静脉血液捕获效率高(86±10%)。双腔管错位导致相应的停留时间变化(通过三尖瓣 1.7±0.5 秒)。与正常方向相比,模拟病例的血液损伤没有显著差异。与正确的双腔管位置相比,双腔管的旋转和平移位移都会导致明显的血液动力学差异。
双腔管的旋转或平移运动是心房血液动力学、静脉捕获效率、血液停留时间和含氧血液输送的决定因素。计算流体动力学方法获得的结果可为评估双腔管在特定患者配置中的性能提供有价值的预见。