From the Departments of Medicine, Emergency Medicine, and Surgery Louisiana State University Health Sciences Center Shreveport, Shreveport, LA.
Department of Surgery, University of Kentucky, Lexington, KT.
ASAIO J. 2021 Aug 1;67(8):943-953. doi: 10.1097/MAT.0000000000001314.
Recirculation in venovenous extracorporeal membrane oxygenation (VV ECMO) leads to reduction in gas transfer efficiency. Studies of the factors contributing have been performed using in vivo studies and computational models. The fixed geometry of previous computational models limits the accuracy of results. We have developed a finite element computational fluid dynamics model incorporating fluid-structure interaction (FSI) that incorporates atrial deformation during atrial filling and emptying, with fluid flow solved using large eddy simulation. With this model, we have evaluated an extensive number of factors that could influence recirculation during two-site VV ECMO, and characterized their impact on recirculation, including cannula construction, insertion depth and orientation, VV ECMO configuration, circuit blood flow, and changes in volume, venous return, heart rate, and blood viscosity. Simulations revealed that extracorporeal blood flow relative to cardiac output, ratio of superior vena caval (SVC) to inferior vena caval (IVC) blood flow, position of the SVC cannula relative to the cavo-atrial junction, and orientation of the return cannula relative to the tricuspid valve had major influences (>20%) on recirculation fraction. Factors with a moderate influence on recirculation fraction (5%-20%) include heart rate, return cannula diameter, and direction of extracorporeal flow. Minimal influence on recirculation (<5%) was associated with atrial volume, position of the IVC cannula relative to the cavo-atrial junction, the number of side holes in the return cannula, and blood viscosity.
再循环在静脉-静脉体外膜肺氧合(VV ECMO)中导致气体转移效率降低。使用体内研究和计算模型已经对导致再循环的因素进行了研究。先前计算模型的固定几何形状限制了结果的准确性。我们已经开发了一种包含流体-结构相互作用(FSI)的有限元计算流体动力学模型,该模型在心房填充和排空期间包含心房变形,使用大涡模拟求解流体流动。使用该模型,我们评估了许多可能影响双部位 VV ECMO 中再循环的因素,并描述了它们对再循环的影响,包括套管构造、插入深度和方向、VV ECMO 配置、回路血液流量以及体积、静脉回流、心率和血液粘度的变化。模拟结果表明,相对于心输出量的体外血流、上腔静脉(SVC)与下腔静脉(IVC)血流的比值、SVC 套管相对于腔静脉-心房连接的位置以及回输套管相对于三尖瓣的位置对再循环分数有很大影响(>20%)。对再循环分数有中度影响(5%-20%)的因素包括心率、回输套管直径和体外血流方向。对再循环影响最小(<5%)的因素与心房体积、IVC 套管相对于腔静脉-心房连接的位置、回输套管中的侧孔数量和血液粘度有关。