Suppr超能文献

头颈部癌症患者的强化治疗选择。

Selection of Head and Neck Cancer Patients for Intensive Therapy.

机构信息

Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.

Center for Precision Radiation Medicine, La Jolla, California.

出版信息

Int J Radiat Oncol Biol Phys. 2020 Jan 1;106(1):157-166. doi: 10.1016/j.ijrobp.2019.09.011. Epub 2019 Sep 30.

Abstract

PURPOSE

Previous studies have found that patients with head and neck cancer (HNC) with a higher relative hazard for recurrence versus competing mortality (ω ratio) are more likely to benefit from intensive therapy. Nomograms to predict this ratio (ω scores) can be useful to guide clinical management; however, comorbidity and other risk factors are frequently lacking from trial samples.

METHODS AND MATERIALS

In this study of 7117 US veterans, we evaluated the ability of a ω score nomogram developed from clinical trial data to stratify patients with HNC treated with radiation therapy by their relative risk of cancer progression versus competing mortality. We then fit generalized competing event models to determine the effect of comorbidity and other covariates on the ω ratio.

RESULTS

The ω score was effective in stratifying patients with HNC according to their risk for cancer recurrence relative to competing mortality, especially among patients aged >70 years. Patients with ω score ≥0.80 were more likely to receive intensive therapy compared with patients with a ω score <0.80 (66 vs. 54%; P < .001). On multivariable generalized competing event regression, T2-4 category (relative hazard ratio [RHR], 1.08; 95% confidence interval [CI], 1.01-1.16), N2-3 category (RHR, 1.07; 95% CI, 1.01-1.15), and being employed (RHR, 1.11; 95% CI, 1.03-1.20) were associated with increased ω ratio, and increasing age (RHR, 0.83; 95% CI, 0.78-0.89), Charlson comorbidity index ≥2 (RHR, 0.85; 95% CI, 0.79-0.91), being a current smoker (RHR, 0.90; 95% CI, 0.84-0.96), and lower body mass index (RHR, 0.89; 95% CI, 0.84-0.95) were associated with a decreased ω ratio.

CONCLUSIONS

The ω scores are effective in stratifying patients with HNC and are correlated with the intensity of treatment given. The ω scores incorporating comorbidity and other risk factors could help identify patients with HNC most likely to benefit from intensive therapy.

摘要

目的

先前的研究发现,与竞争死亡率相比,头颈部癌症(HNC)患者的复发相对危险度(ω比值)较高的患者更有可能从强化治疗中获益。预测该比值(ω评分)的列线图有助于指导临床管理;然而,试验样本中通常缺乏合并症和其他危险因素。

方法和材料

在这项对 7117 名美国退伍军人的研究中,我们评估了从临床试验数据中开发的 ω 评分列线图,以通过辐射治疗的 HNC 患者的癌症进展相对于竞争死亡率的相对风险来分层患者。然后,我们拟合广义竞争事件模型,以确定合并症和其他协变量对 ω 比值的影响。

结果

ω 评分可有效根据癌症复发相对于竞争死亡率的风险对 HNC 患者进行分层,尤其是在年龄>70 岁的患者中。与 ω 评分<0.80 的患者相比,ω 评分≥0.80 的患者更有可能接受强化治疗(66%比 54%;P<0.001)。在多变量广义竞争事件回归中,T2-4 期(相对危险比 [RHR],1.08;95%置信区间 [CI],1.01-1.16)、N2-3 期(RHR,1.07;95%CI,1.01-1.15)和就业(RHR,1.11;95%CI,1.03-1.20)与增加的 ω 比值相关,而年龄增加(RHR,0.83;95%CI,0.78-0.89)、Charlson 合并症指数≥2(RHR,0.85;95%CI,0.79-0.91)、当前吸烟者(RHR,0.90;95%CI,0.84-0.96)和较低的体重指数(RHR,0.89;95%CI,0.84-0.95)与降低的 ω 比值相关。

结论

ω 评分可有效分层 HNC 患者,与所给予治疗的强度相关。纳入合并症和其他危险因素的 ω 评分有助于识别最有可能从强化治疗中获益的 HNC 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验