Suppr超能文献

活性位点极化和动力学的周期性变化驱动NRH:醌氧化还原酶2中的“乒乓”动力学:来自量子力学/分子力学模拟的见解

Cyclic Changes in Active Site Polarization and Dynamics Drive the 'Ping-pong' Kinetics in NRH:Quinone Oxidoreductase 2: An Insight from QM/MM Simulations.

作者信息

Reinhardt Clorice R, Hu Quin H, Bresnahan Caitlin G, Hati Sanchita, Bhattacharyya Sudeep

机构信息

Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702.

出版信息

ACS Catal. 2018 Dec 7;8(12):12015-12029. doi: 10.1021/acscatal.8b04193. Epub 2018 Nov 14.

Abstract

Quinone reductases belong to the family of flavin-dependent oxidoreductases. With the redox active cofactor, flavin adenine dinucleotide, quinone reductases are known to utilize a 'ping-pong' kinetic mechanism during catalysis in which a hydride is bounced back and forth between flavin and its two substrates. However, the continuation of this catalytic cycle requires product displacement steps, where the product of one redox half-cycle is displaced by the substrate of the next half-cycle. Using improved hybrid quantum mechanical/molecular mechanical simulations, both the catalytic hydride transfer and the product displacement reactions were studied in NRH:quinone oxidoreductase 2. Initially, the self-consistent charge-density functional tight binding theory was used to describe flavin ring and the substrate atoms, while embedded in the molecular mechanically-treated solvated active site. Then, for each step of the catalytic cycle, a further improvement of energetics was made using density functional theory-based corrections. The present study showcases an integrated interplay of solvation, protonation, and protein matrix-induced polarization as the driving force behind the thermodynamic wheel of the 'ping-pong' kinetics. Reported here is the first-principles model of the 'ping-pong' kinetics that portrays how cyclic changes in the active site polarization and dynamics govern the oscillatory hydride transfer and product displacement in this enzyme.

摘要

醌还原酶属于黄素依赖性氧化还原酶家族。已知醌还原酶在催化过程中利用“乒乓”动力学机制,其氧化还原活性辅因子为黄素腺嘌呤二核苷酸,在此机制中,氢化物在黄素及其两种底物之间来回转移。然而,这种催化循环的持续需要产物置换步骤,即一个氧化还原半循环的产物被下一个半循环的底物所置换。利用改进的量子力学/分子力学混合模拟,对NRH:醌氧化还原酶2中的催化氢化物转移和产物置换反应进行了研究。最初,采用自洽电荷密度泛函紧束缚理论来描述黄素环和底物原子,同时将其嵌入经分子力学处理的溶剂化活性位点中。然后,对于催化循环的每一步,利用基于密度泛函理论的校正对能量学进行了进一步改进。本研究展示了溶剂化、质子化和蛋白质基质诱导极化之间的综合相互作用,这是“乒乓”动力学热力学循环背后的驱动力。本文报道了“乒乓”动力学的第一性原理模型,该模型描绘了活性位点极化和动力学的循环变化如何控制该酶中的振荡氢化物转移和产物置换。

相似文献

4
A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
Biochim Biophys Acta. 2014 Feb;1837(2):251-63. doi: 10.1016/j.bbabio.2013.10.010. Epub 2013 Nov 4.
5
Biphasic kinetic behavior of E. coli WrbA, an FMN-dependent NAD(P)H:quinone oxidoreductase.
PLoS One. 2012;7(8):e43902. doi: 10.1371/journal.pone.0043902. Epub 2012 Aug 29.
7
The mechanism of catalysis by type-II NADH:quinone oxidoreductases.
Sci Rep. 2017 Jan 9;7:40165. doi: 10.1038/srep40165.
9
Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
Phys Chem Chem Phys. 2015 Feb 21;17(7):4961-9. doi: 10.1039/c4cp05063k.

引用本文的文献

1
Efficient and Explainable Virtual Screening of Molecules through Fingerprint-Generating Networks Integrated with Artificial Neural Networks.
ACS Omega. 2025 Jan 28;10(5):4896-4911. doi: 10.1021/acsomega.4c10289. eCollection 2025 Feb 11.
2
Virtual Screening of Molecules via Neural Fingerprint-based Deep Learning Technique.
Res Sq. 2024 May 9:rs.3.rs-4355625. doi: 10.21203/rs.3.rs-4355625/v1.
3
Polymorphisms and Pharmacogenomics of : The Past and the Future.
Genes (Basel). 2024 Jan 10;15(1):87. doi: 10.3390/genes15010087.
5
Editing Domain Motions Preorganize the Synthetic Active Site of Prolyl-tRNA Synthetase.
ACS Catal. 2020 Sep 4;10(17):10229-10242. doi: 10.1021/acscatal.0c02381. Epub 2020 Aug 14.

本文引用的文献

1
Targeting NAD(P)H:Quinone Oxidoreductase (NQO1) in Pancreatic Cancer.
Mol Carcinog. 2017 Jul;56(7):1825-1834. doi: 10.1002/mc.20199. Epub 2006 Mar 27.
4
An unprecedented mechanism of nucleotide methylation in organisms containing thyX.
Science. 2016 Jan 29;351(6272):507-10. doi: 10.1126/science.aad0300.
5
Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM.
J Chem Theory Comput. 2006 May;2(3):815-26. doi: 10.1021/ct050289g.
6
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
7
Quinone reductase 2 as a promising target of melatonin therapeutic actions.
Expert Opin Ther Targets. 2016;20(3):303-17. doi: 10.1517/14728222.2016.1091882. Epub 2015 Oct 14.
8
Implications of NQO1 in cancer therapy.
BMB Rep. 2015 Nov;48(11):609-17. doi: 10.5483/bmbrep.2015.48.11.190.
9
Evolution of Enzyme Kinetic Mechanisms.
J Mol Evol. 2015 Jun;80(5-6):251-7. doi: 10.1007/s00239-015-9681-0. Epub 2015 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验